37 results.
-
Question in Perdita's workspace
Solve for $x$ and $y$: \[ \begin{eqnarray} a_1x+b_1y&=&c_1\\ a_2x+b_2y&=&c_2 \end{eqnarray} \]
The included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
-
Question in Morten's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in joshua's workspace
Solve for $x$ and $y$: \[ \begin{eqnarray} a_1x+b_1y&=&c_1\\ a_2x+b_2y&=&c_2 \end{eqnarray} \]
The included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
-
Question in Jessica's workspace
Three items of work done on a car. Given total price, and a couple of ratios of prices between pairs of items, work out the cost of one of the items.
Based on question 4 from section 3 of the Maths-Aid workbook on numerical reasoning.
-
Question in Jessica's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Bill's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in David's workspace
Solve for $x$ and $y$: \[ \begin{eqnarray} a_1x+b_1y&=&c_1\\ a_2x+b_2y&=&c_2 \end{eqnarray} \]
The included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.