80 results.
-
Question in Content created by Newcastle University
Solving three simultaneous congruences using the Chinese Remainder Theorem:
\[\begin{eqnarray*} x\;&\equiv&\;b_1\;&\mod&\;n_1\\ x\;&\equiv&\;b_2\;&\mod&\;n_2\\x\;&\equiv&\;b_3\;&\mod&\;n_3 \end{eqnarray*} \] where $\operatorname{gcd}(n_1,n_2,n_3)=1$
-
Question in Content created by Newcastle University
Solving a pair of congruences of the form \[\begin{align}x &\equiv b_1\;\textrm{mod} \;n_1\\x &\equiv b_2\;\textrm{mod}\;n_2 \end{align}\] where $n_1,\;n_2$ are coprime.
-
Question in Content created by Newcastle University
Solving three simultaneous congruences using the Chinese Remainder Theorem:
\[\begin{eqnarray*} x\;&\equiv&\;b_1\;&\mod&\;n_1\\ x\;&\equiv&\;b_2\;&\mod&\;n_2\\x\;&\equiv&\;b_3\;&\mod&\;n_3 \end{eqnarray*} \] where $\operatorname{gcd}(n_1,n_2,n_3)=1$
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle ax+b = cx+d$
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle \frac{px+s}{ax+b} = \frac{qx+t}{cx+d}$ with $pc=qa$.
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle \frac{s}{ax+b} = \frac{t}{cx+d}$
-
Question in Content created by Newcastle University
Solve for $x$ and $y$: \[ \begin{eqnarray} a_1x+b_1y&=&c_1\\ a_2x+b_2y&=&c_2 \end{eqnarray} \]
The included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle ax ^ 2 + bx + c=0$.
Entering the correct roots in any order is marked as correct. However, entering one correct and the other incorrect gives feedback stating that both are incorrect.
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle \frac{a} {bx+c} + d= s$
-
Question in Content created by Newcastle University
Solve $\displaystyle ax + b = cx + d$ for $x$.
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle \frac{a} {bx+c} + d= s$
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle ax ^ 2 + bx + c=0$.
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle 2\log_{a}(x+b)- \log_{a}(x+c)=d$.
Make sure that your choice is a solution by substituting back into the equation.
-
Question in Content created by Newcastle University
Solve for $x$ and $y$: \[ \begin{eqnarray} a_1x+b_1y&=&c_1\\ a_2x+b_2y&=&c_2 \end{eqnarray} \]
-
Question in Content created by Newcastle University
Solve $\displaystyle ax + b =\frac{f}{g}( cx + d)$ for $x$.
A video is included in Show steps which goes through a similar example.
-
Question in Algebra
No description given
-
Question in Algebra
No description given
-
Question in Bill's workspace
Write down the Newton-Raphson formula for finding a numerical solution to the equation $e^{mx}+bx-a=0$. If $x_0=1$ find $x_1$.
Included in the Advice of this question are:
6 iterations of the method.
Graph of the NR process using jsxgraph. Also user interaction allowing change of starting value and its effect on the process.
-
Question in Julie's workspace
Find the solution of $\displaystyle \frac{dy}{dx}=\frac{1+y^2}{a+bx}$ which satisfies $y(1)=c$
rebelmaths
-
Question in Julie's workspace
Rearranging equations by multiplying or dividing: One step
rebelmaths
-
Question in bryan's workspace
Solving a system of three linear equations in 3 unknowns using Gauss Elimination in 4 stages. Solutions are all integral.
-
Question in Algebra
Shows how to define variables to stop degenerate examples.
-
Question in Algebra
Solve for $x$: $\displaystyle \frac{a} {bx+c} + d= s$
-
Question in Algebra
Solve for $x$: $\displaystyle ax ^ 2 + bx + c=0$.
-
Question in Algebra
Equations of type ax-b = c.
Includes advice.
-
Question in Julie's workspace
Solve for $x$: $\displaystyle 2\log_{a}(x+b)- \log_{a}(x+c)=d$.
Make sure that your choice is a solution by substituting back into the equation.
-
Question in Julie's workspace
Solve for $x$: $\log_{a}(x+b)- \log_{a}(x+c)=d$
-
Question in Rob's workspace
No description given
-
Question in Algebra
No description given
-
Question in Algebra
No description given