631 results for "variable".

Show results for

Refine by

  • Status

  • Author

  • Tags

  • Usage rights

  • Ability Level

  • Topics

  • Add, subtract, multiply and divide algebraic fractions.

  • Find (hyperbolic substitution):
    $\displaystyle \int_{b}^{2b} \left(\frac{1}{\sqrt{a^2x^2-b^2}}\right)\;dx$

  • Equations which can be written in the form

    \[\dfrac{\mathrm{d}y}{\mathrm{d}x} = f(x),   \dfrac{\mathrm{d}y}{\mathrm{d}x} = f(y),   \dfrac{\mathrm{d}y}{\mathrm{d}x} = f(x)f(y)\]

    can all be solved by integration.

    In each case it is possible to separate the $x$'s to one side of the equation and the $y$'s to the other

    Solving such equations is therefore known as solution by separation of variables

  • Question in Tom's workspace by Tom Stallard

    $x_n=\frac{an^2+b}{cn^2+d}$. Find the least integer $N$ such that $\left|x_n -\frac{a}{c}\right| < 10 ^{-r},\;n\geq N$, $2\leq r \leq 6$. Determine whether the sequence is increasing, decreasing or neither.

  • Question in Headstart by Rob Cade

    8/9/15

    Practice of cancelling a fraction, where the denominator will reduce to either 5,10, 20, 25, or 50 and then multiplying numerator and denominator by either 20, 10, 5, 4 or 2 respectively, to represent the fraction as a percentage.  A helpful strategy in the QTS test...

    Tweaked the variables to avoid duplicate fractions in the 2 parts & make the second slightly more tricky, on average.  Used the Testing facility to prevent 100 or 200 appearing in the denominators.

  • Question in Paul's workspace by Picture of Paul Howes Paul Howes

    $I$ compact interval. $\displaystyle g: I\rightarrow I, g(x)=\frac{x^2}{(x-c)^{a/b}}$. Are there stationary points and local maxima, minima? Has $g$ a global max, global min? 

  • Question in Paul's workspace by Picture of Paul Howes Paul Howes

    $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min? 

  • ma2178_Logikk
    Ready to use

    Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.

    For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$

  • ma217_Logikk
    Ready to use

    Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.

    For example: $(p \lor \neg q) \land(q \to \neg p)$.

  • ma219_Logikk
    Ready to use

    Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.

    For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$

  • ma220_Tovariable
    Ready to use

    Finn det stasjonære punktet  $(p,q)$ til funksjonen: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Finn verdiene til $f(p,q)$.

  • ma221_Tovariable
    Ready to use

    Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.

  • 4 questions. Qualitative, quantitative random variables, types of sampling, frequencies, stem and leaf plot, descriptive statistics.

  • 3 questions. Finding the stationary points of functions of 2 variables.

    Partial differentiation.

  • Two factor ANOVA
    Ready to use
    Question in Christian's workspace by Picture of Christian Lawson-Perfect Christian Lawson-Perfect and 1 other

    Template question. The student is asked to perform a two factor ANOVA to test the null hypotheses that the measurement does not depend on each of the factors, and that there is no interaction between the factors.

  • Exam (3 questions) in Maths Support Wiki by Picture of Christian Lawson-Perfect Christian Lawson-Perfect

    3 questions. Finding the stationary points of functions of 2 variables.

    Partial differentiation.

  • Exam (4 questions) in Maths Support Wiki by Picture of Christian Lawson-Perfect Christian Lawson-Perfect

    4 questions. Qualitative, quantitative random variables, types of sampling, frequencies, stem and leaf plot, descriptive statistics.

  • No description given

  • Question in vijay's workspace by vijay t

    Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.

  • Question in YJ's workspace by YJ Kim

    Template question. The student is asked to perform a two factor ANOVA to test the null hypotheses that the measurement does not depend on each of the factors, and that there is no interaction between the factors.

  • Truth tables 0 (v2)
    Ready to use
    Question in Bill's workspace by Bill Foster

    Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.

    For example $\neg q \to \neg p$.

  • Truth tables 1(v2)
    Ready to use
    Question in Bill's workspace by Bill Foster

    Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.

    For example: $(p \lor \neg q) \land(q \to \neg p)$.

  • Truth tables 2 (v2)
    Ready to use
    Question in Bill's workspace by Bill Foster

    Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.

    For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$

  • Truth tables 3 (v2)
    Ready to use
    Question in Bill's workspace by Bill Foster

    Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.

    For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$

  • Truth tables 4 (v2)
    Ready to use
    Question in Bill's workspace by Bill Foster

    Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.

    For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$

  • Question in Bill's workspace by Bill Foster

    Solve for $x$ and $y$:  \[ \begin{eqnarray} a_1x+b_1y&=&c_1\\   a_2x+b_2y&=&c_2 \end{eqnarray} \]

    The included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.

  • Question in Bill's workspace by Bill Foster

    Shows how to define variables to stop degenerate examples.

  • Template question. The student is asked to perform a two factor ANOVA to test the null hypotheses that the measurement does not depend on each of the factors, and that there is no interaction between the factors.

  • Finding the modulus and argument (in radians) of four complex numbers; the arguments between $0$ and $2 \pi$ and careful with quadrants!

  • Question in Bill's workspace by Bill Foster

    Seven standard elementary limits of sequences.