111 results for "acute".
-
Question in Blathnaid's workspace
Given two numbers, find the gcd, then use Bézout's algorithm to find $s$ and $t$ such that $as+bt=\operatorname{gcd}(a,b)$.
-
Question in Algebra Mat140
Crear una tabla de verdad para una expresión lógica de la forma :
$( a \ {op1} \ b) \ {op2} \ (c \ {op} \ d) \ {op4} \ e $
donde cada una de $a, \; b, \; c, \; d, \; e, \; f $ puede ser una de las variables booleanas $ p, \; q, \; \neg q, \; \neg p $ y cada uno de los operados $\{op}$ puede ser uno de los operadores $\lor, \; \land, \; \to$.
Por ejemplo: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$ -
Question in Luis's workspace
Dados los primeros y últimos términos de una secuencia aritmética finita, calcule el número de elementos y luego la suma de la secuencia.
Cada parte se divide en pasos, con la fórmula dada.
-
Question in Blathnaid's workspace
Given two numbers, find the gcd, then use Bézout's algorithm to find $s$ and $t$ such that $as+bt=\operatorname{gcd}(a,b)$. Finally, find all solutions of an equation $\mod b$.
-
Question in Funtions
aleatorio de función cubica
-
Question in Funtions
aleatorio de función cubica
-
Question in Numeros Complejos
Cálculo del módulo, argumento, multiplicación por conjugado complejo, dados dos números complejos.
-
Question in Numeros Complejos
Operaciones combinadas con números complejos.
-
Question in Numeros Complejos
Multiplicación y división de números complejos.
-
Resuelve las divisiones de números complejos y exprese el resultado en la forma: $a+bi$. Ready to useQuestion in Numeros Complejos
Inverso y división de números complejos.
-
Resuelve las operaciones de números complejos y expresa en la forma $ a + bi \; $ donde $ a $ y $ b $ son reales. Ready to useQuestion in Numeros Complejos
Multiplicación y suma de números complejos.
-
Question in Numeros Complejos
Ejemplos elementales de multiplicación y suma de números complejos.
-
Question in Andrew's workspace
A question testing the application of the Area of a Triangle formula when given two sides and an angle. In these questions, the triangle is always acute and both of the given side lengths are adjacent to the given angle.
-
Question in Andrew's workspace
Two questions testing the application of the Sine Rule when given two angles and a side. In this question, the triangle is always acute.
-
Question in Andrew's workspace
Two questions testing the application of the Sine Rule when given two sides and an angle. In this question, the triangle is always acute and one of the given side lengths is opposite the given angle.
-
Question in Andrew's workspace
Two questions testing the application of the Cosine Rule when given two sides and an angle. In these questions, the triangle is always acute and both of the given side lengths are adjacent to the given angle.
-
Question in Andrew's workspace
A question testing the application of the Cosine Rule when given three side lengths. In this question, the triangle is always acute. A secondary application is finding the area of a triangle.
-
Question in Content created by Newcastle University
A question testing the application of the Cosine Rule when given three side lengths. In this question, the triangle is always acute. A secondary application is finding the area of a triangle.
-
Question in Content created by Newcastle University
Two questions testing the application of the Sine Rule when given two angles and a side. In this question the triangle is obtuse. In one question, the two given angles are both acute. In the second, one of the angles is obtuse.
-
Question in Content created by Newcastle University
Two questions testing the application of the Sine Rule when given two sides and an angle. In this question, the triangle is always acute and one of the given side lengths is opposite the given angle.
-
Exam (1 question) in Blathnaid's workspace
Given two numbers, find the gcd, then use Bézout's algorithm to find $s$ and $t$ such that $as+bt=\operatorname{gcd}(a,b)$.
Finally, find all solutions of an equation $\mod b$.
-
Exam (1 question) in Blathnaid's workspace
Given two numbers, find the gcd, then use Bézout's algorithm to find $s$ and $t$ such that $as+bt=\operatorname{gcd}(a,b)$.
Finally, find all solutions of an equation $\mod b$.
-
Question in Trignometry
multiple choice testing sin, cos, tan of random(pi/6, pi/4, pi/3) radians
-
Question in Trignometry
multiple choice testing csc, sec, cot of random(pi/6, pi/4, pi/3) radians
-
Question in Trignometry
multiple choice testing csc, sec, cot of random(30, 45, 60) degrees
-
Question in Trignometry
multiple choice testing sin, cos, tan of random(30, 45, 60) degrees
-
Question in College Algebra for STEM
Reconociendo que $ (x-a)^2 + (y-b)^2 = r^2 $ es un círculo de radio $r$ con el centro $(a, b) $
-
Question in MY QUESTIONS
multiple choice testing sin, cos, tan of random(30, 45, 60) degrees
-
Question in Progresiones Aritméticas
Diferenciar entre secuencias aritméticas y geométricas a través de una serie de preguntas de opción múltiple. Localice diferentes patrones en secuencias como la secuencia de triángulos, la secuencia cuadrada y la secuencia cúbica y luego use este patrón para encontrar las siguientes funciones en cada una de las secuencias.
-
Question in Luis's workspace
Dada una función de oráculo que dará salida a su valor dada una entrada: primero estima la derivada y luego calcula su forma.