290 results for "matrices".
-
Question in .Matrix AlgebraIdentify element of a matrix.
-
Question in .Matrix Algebra
Determinant of 2x2 and notation
Students are asked to form the calculation before giving answer.
-
Question in .Matrix Algebra
Multiplying matrices (pre-defined sizes in answers)
-
Question in .Matrix Algebra
Multiplying matrices (pre-defined sizes in answers)
Introduces unit/identity matrices
-
Question in .Matrix AlgebraMatrix subtraction (student defines dimensions in answer)
-
Question in .Matrix AlgebraScalar Multiplication, addition and subtraction in combination (pre-defined sizes in answers)
-
Question in .Matrix Algebra
Multiplying matrices (student-defines sizes in answers)
-
Question in .Matrix AlgebraScalar Multiplication (student-defines sizes in answers)
-
Question in Content created by Newcastle University
Choose which of 5 matrices are in a) row echelon form but not reduced b) reduced row echelon form c) neither.
-
Exam (3 questions) in Fundamentals of Mathematics and Computer Architecture
Some basic tests of adding, scaling, and multiplying matrices.
-
Question in Linear Algebra 1st year
Adding 2x2 matrices. Very simple question. Marks per correct entry.
-
Question in Linear Algebra 1st year
In this demo question, you can see either 2 or 3 gaps depending on the variable \(m\), and the marking algorithm doesn't penalise for the empty third gap in cases when it is not shown.
Reason to use it: for vectors or matrices containing only numbers, one can easily use matrix entry to account for a random size of an answer. But this does not work for mathematical expressions. There we have to give each entry of the vector as a separate gap, which then becomes a problem when the size varies. This solves that problem. For this reason I've included two parts: one very simple one that just shows the phenomenon of variable number of gaps, and one which is more like why I needed it.
Note that to resolve the fact that when \(m=2\), the point for the third gap cannot be earned, I have made it so that the student only gets 0 or all points, when all shown gaps are correctly filled in.
Note the use of Ax[m-1] in the third gap "correct answer" of part b): if you use Ax[2], then it will throw an error when m=2, as then Ax won't have the correct size. So even though the marking algorithm will ignore it, the question would still not work.
Bonus demo if you look in the variables: A way to automatically generate the correct latex code for \(\var{latexAx}\), since it's a variable size. I would usually need that in the "Advice", i.e. solutions, rather than the question text.
-
Question in Linear Algebra 1st year
In this demo question, you can see either 2 or 3 gaps depending on the variable \(m\), and the marking algorithm doesn't penalise for the empty third gap in cases when it is not shown.
Reason to use it: for vectors or matrices containing only numbers, one can easily use matrix entry to account for a random size of an answer. But this does not work for mathematical expressions. There we have to give each entry of the vector as a separate gap, which then becomes a problem when the size varies. This solves that problem. For this reason I've included two parts: one very simple one that just shows the phenomenon of variable number of gaps, and one which is more like why I needed it.
Note that to resolve the fact that when \(m=2\), the point for the third gap cannot be earned, I have made it so that the student only gets 0 or all points, when all shown gaps are correctly filled in.
Note the use of Ax[m-1] in the third gap "correct answer" of part b): if you use Ax[2], then it will throw an error when m=2, as then Ax won't have the correct size. So even though the marking algorithm will ignore it, the question would still not work.
Bonus demo if you look in the variables: A way to automatically generate the correct latex code for \(\var{latexAx}\), since it's a variable size. I would usually need that in the "Advice", i.e. solutions, rather than the question text.
-
Question in Linear Algebra 1st year
Demo of automatically generating latex strings to out put vectors/matrices of variable size and that are calculated by some formula.
-
Question in Linear Algebra 1st year
simple sums of matrices and scalar mult of matrices.
-
Question in Linear Algebra 1st year
checking by size whether two matrices can be multiplied. Student either gives size of resulting product, or NA if matrices can't be multiplied.
-
Question in Linear Algebra 1st year
checking by size whether two matrices can be multiplied. Student either gives size of resulting product, or NA if matrices can't be multiplied.
-
Question in Linear Algebra 1st year
Decide if matrix sizes match so they can be added.
-
Question in Linear Algebra 1st year
Adding matrices of random size: two to four rows and two to four columns. Advice (i.e. solution) has conditional visibility to show only the correct size.
-
Question in Linear Algebra 1st year
A combination of tasks: checking which matrix products exist, calculating some of these products, calculating transpose matrices. Comparing product of transpose with transpose of product. Experiencing associativity of matrix multiplication. Not much randomisation, only in which matrix product is computed as second option.
Comprehensive solution written out in Advice.
-
Question in Linear Algebra 1st year
Finding a matrix from a formula for each entry, which involves the row and column numbers of that entry. Randomized size of the matrices and formula.
-
Question in Linear Algebra 1st year
Finding a matrix from a formula for each entry, which involves the row and column numbers of that entry. Randomized size of the matrices and formula.
-
Question in Linear Algebra 1st year
Student can choose one of all possible matrix products from the matrices given. Meant for voluntary extra practice. No extensive solutions: referred to other questions for this.
-
Question in Linear Algebra 1st year
A combination of tasks: checking which matrix products exist, calculating some of these products, calculating transpose matrices. Comparing product of transpose with transpose of product. Experiencing associativity of matrix multiplication. Not much randomisation, only in which matrix product is computed as second option.
Comprehensive solution written out in Advice.
-
Question in Linear Algebra 1st year
Calculate trace of a matrix. Fixed matrices as the same as in our workbook.
-
Question in Linear Algebra 1st year
Asking the student to create examples of two matrices which multiply to zero but are not themselves the zero matrix. Then getting the student to think about some features of these examples.
-
Question in Linear Algebra 1st year
Matrix addition, with the added test of whether they understand that only matrices of the same size can be added.
-
Question in Linear Algebra 1st year
Find the size of a matrix.
-
Question in Marie's linear algebra workspace
Multiplication of $2 \times 2$ matrices.
-
Question in Marie's linear algebra workspace
Find the determinant and inverse of three $2 \times 2$ invertible matrices.