292 results for "vectors".
-
Question in MASH Bath: Question Bank
Calculate the vector product between two vectors.
-
Question in MASH Bath: Question Bank
Given three 3-dimensional vectors $\mathbf a$, $\mathbf b$ and $\mathbf c$, calculate the scalar product between $\mathbf a$ and $\mathbf b$, the angle between $\mathbf a$ and $\mathbf b$, and $\mathbf a (\mathbf b \cdot \mathbf c)$,
-
Question in MASH Bath: Question Bank
Given three 2-dimensional vectors $\mathbf a$, $\mathbf b$ and $\mathbf c$, calculate the scalar product between $\mathbf a$ and $\mathbf b$, the angle between $\mathbf a$ and $\mathbf b$, and $\mathbf a (\mathbf b \cdot \mathbf c)$,
-
Question in MASH Bath: Question Bank
Finding a vector when given the magnitude of the vector and a parallel vector.
-
Question in MASH Bath: Question Bank
Given the coordinates of three 2-dimensional points $A$, $B$ and $C$, find the vectors $\vec{AB}$, $\vec{AC}$ and $\vec{CB}$.
-
Question in MASH Bath: Question Bank
Find the $x$ and $y$ components of the resultant force on an object, when multiple forces are applied at different angles.
-
Question in Julia Goedecke's contributions
Example of an explore mode question. Student is given a 2x2 matrix and is asked to find the characteristic polynomial and eigenvalues, and then eigenvectors for each eigenvalue. The part asking for eigenvectors can be repeated as often as the student wants, to be used for different eigenvalues.
Assessed: calculating characteristic polynomial and eigenvectors.
Feature: any correct eigenvector is recognised by the marking algorithm, also multiples of the "obvious" one(s) (given the reduced row echelon form that we use to calculate them).
Randomisation: a random true/false for invertibility is created, and the eigenvalues a and b are randomised (condition: two different evalues, and a=0 iff invertibility is false), and a random invertible 2x2 matrix with determinant 1 or -1 is created (via random elementary row operations) to change base from diag(a,b) to the matrix for the question. Determinant 1 or -1 ensures that we keep integer entries.
The implementation uses linear algebra functions such as "find reduced echelon form" or "find kernel of a reduced echelon form", from the extension "linalg2".
-
Question in Julia Goedecke's contributions
Example of an explore mode question. Student is given a 3x3 matrix and is asked to find the characteristic polynomial and eigenvalues, and then eigenvectors for each eigenvalue. The part asking for eigenvectors can be repeated as often as the student wants, to be used for different eigenvalues.
Assessed: calculating characteristic polynomial and eigenvectors.
Feature: any correct eigenvalue will be recognised by the marking algorithm, even multiples of the obvious one(s) (which can be read off from the reduced row echelon form)
Randomisation: Not randomised, just using particular matrices. I am still working on how to randomise this for 3x3; a randomised 2x2 version exists. I have several different versions for 3x3 (not all published yet), so I could make a random choice between these in a test.
The implementation uses linear algebra functions such as "find reduced echelon form" or "find kernel of a reduced echelon form", from the extension "linalg2".
-
Question in Julia Goedecke's contributions
Student decides on four different examples whether two subspaces form a direct sum and whether the sum is the whole vectorspace.
No randomisation, just the four examples. The question is set in explore mode, so that after deciding, students are asked to give reasons for their choices.
-
Question in Linear Algebra 1st year
Given vectors $\boldsymbol{v}$ and $\boldsymbol{w}$, find their inner product.
-
Question in Linear Algebra 1st year
Given vectors $\boldsymbol{v}$ and $\boldsymbol{w}$, find their inner product.
-
Question in Julia Goedecke's contributions
Example of an explore mode question. Student is given a 2x2 matrix with eigenvalues and eigenvectors, and is asked to decide if the matrix is invertible. If yes, second and third parts are offered where the student should give the eigenvalues and eigenvectors of the inverse matrix.
Assessed: remembering link between 0 eigenvalue and invertibility. Remembering link between eigenvalues and eigenvectors of matrix and its inverse.
Randomisation: a random true/false for invertibility is created, and the eigenvalues a and b are randomised (condition: two different evalues, and a=0 iff invertibility is false), and a random invertible 2x2 matrix with determinant 1 or -1 is created (via random elementary row operations) to change base from diag(a,b) to the matrix for the question. Determinant 1 or -1 ensures that we keep integer entries.
The implementation uses linear algebra functions such as "find reduced echelon form" or "find kernel of a reduced echelon form", from the extension "linalg2".
-
Question in rhaana's workspace
Based on Chapter 8, quite loosley.Putting a pair of linear equations into matrix notation and then solving by finding the inverse of the coefficient matrix.
-
Question in .Vectors
Add three vectors by determining their scalar components, summing them and then resolving the rectangular components to find the magnitude and direction of the resultant
-
Question in Assessment Exercises
Add three vectors by determining their scalar components, summing them and then resolving the rectangular components to find the magnitude and direction of the resultant
-
Question in Assessment Exercises
Add three vectors by determining their scalar components, summing them and then resolving the rectangular components to find the magnitude and direction of the resultant
-
Exam (14 questions) in .Vectors
Questions on vector arithmetic and vector operations, including dot and cross product, as well as the vector equations of planes and lines.
-
Exam (5 questions) in .Vectors
5 questions on vectors. Scalar product, angle between vectors, cross product, when are vectors perpendicular, combinations of vectors defined or not.
-
Question in Trigonometry
No description given
-
Question in Linear Algebra 1st year
In this demo question, you can see either 2 or 3 gaps depending on the variable \(m\), and the marking algorithm doesn't penalise for the empty third gap in cases when it is not shown.
Reason to use it: for vectors or matrices containing only numbers, one can easily use matrix entry to account for a random size of an answer. But this does not work for mathematical expressions. There we have to give each entry of the vector as a separate gap, which then becomes a problem when the size varies. This solves that problem. For this reason I've included two parts: one very simple one that just shows the phenomenon of variable number of gaps, and one which is more like why I needed it.
Note that to resolve the fact that when \(m=2\), the point for the third gap cannot be earned, I have made it so that the student only gets 0 or all points, when all shown gaps are correctly filled in.
Note the use of Ax[m-1] in the third gap "correct answer" of part b): if you use Ax[2], then it will throw an error when m=2, as then Ax won't have the correct size. So even though the marking algorithm will ignore it, the question would still not work.
Bonus demo if you look in the variables: A way to automatically generate the correct latex code for \(\var{latexAx}\), since it's a variable size. I would usually need that in the "Advice", i.e. solutions, rather than the question text.
-
Question in Linear Algebra 1st year
Demo of automatically generating latex strings to out put vectors/matrices of variable size and that are calculated by some formula.
-
Question in Linear Algebra 1st year
In this demo question, you can see either 2 or 3 gaps depending on the variable \(m\), and the marking algorithm doesn't penalise for the empty third gap in cases when it is not shown.
Reason to use it: for vectors or matrices containing only numbers, one can easily use matrix entry to account for a random size of an answer. But this does not work for mathematical expressions. There we have to give each entry of the vector as a separate gap, which then becomes a problem when the size varies. This solves that problem. For this reason I've included two parts: one very simple one that just shows the phenomenon of variable number of gaps, and one which is more like why I needed it.
Note that to resolve the fact that when \(m=2\), the point for the third gap cannot be earned, I have made it so that the student only gets 0 or all points, when all shown gaps are correctly filled in.
Note the use of Ax[m-1] in the third gap "correct answer" of part b): if you use Ax[2], then it will throw an error when m=2, as then Ax won't have the correct size. So even though the marking algorithm will ignore it, the question would still not work.
Bonus demo if you look in the variables: A way to automatically generate the correct latex code for \(\var{latexAx}\), since it's a variable size. I would usually need that in the "Advice", i.e. solutions, rather than the question text.
-
Question in Linear Algebra 1st year
Adding vectors of random size. Advice (i.e. solution) has conditional visibility to show only the correct size.
-
Question in Linear Algebra 1st year
Adding and subtracting vectors of random size, including resolving brackets. Advice (i.e. solution) has conditional visibility to show only the correct size.
-
Question in Linear Algebra 1st year
Simple vector addition and scalar multiplication in \(\mathbb{R}^2\).
-
Question in Linear Algebra 1st year
Abstract linear combinations. "Surreptitious" preview of bases and spanning sets, but not explicitely mentioned. There is no randomisation because it is just an abstract question. For counter-examples, any valid counter-example is accepted.
-
Question in Linear Algebra 1st year
Calculating with vectors of random size, including resolving brackets. Advice (i.e. solution) has conditional visibility to show only the correct size.
-
Question in Linear Algebra 1st year
Determine for which value of \(t\) two vectors are parallel. In the first part, there is no real number \(t\) to make it work. In the second part, a value can be worked out.
-
Question in Linear Algebra 1st year
Checking whether a given set is a plane or not. Depends on whether two vectors are parallel or not. Then checking whether the plane goes through the origin. This is not always obvious from the presentation.
Not randomised because it's the same as in our workbook.
-
Question in Linear Algebra 1st year
give the negative of each of two vectors. One always has 5 entries, the other has a random number of entries.