10994 results.
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question in joshua's workspace
No description given
-
Question in joshua's workspace
No description given
-
Question in Katie's workspace
Coverting back from standard form
-
Question in Keith's workspace
Testing an hypothesis about the mean of one group.
-
Question in Keith's workspace
Testing an hypothesis about the mean of one group.
-
Question in Tony's workspace
A simultaneous equations question with integers only
-
Question in Tore's workspace
No description given
-
Question in Katie's workspace
Simple trig equations with degrees
-
Question in Katie's workspace
Simple trig equations with radians
-
Question in Katie's workspace
Trigonometric equations with degrees
-
Question in Katie's workspace
Trigonometric equations with radians
-
Question in Katie's workspace
More difficult trigonometric equations with degrees
-
Question in Katie's workspace
More difficult trigonometric equations with radians
-
Question in Katie's workspace
Using trig identities to find solutions to equations
-
Question in Katie's workspace
Converting to standard form in both positive and negative powers
-
Question in joshua's workspace
No description given
-
Question in joshua's workspace
No description given
-
Question in joshua's workspace
No description given
-
Question in Keith's workspace
Calculating summary statistics.
-
Question in joshua's workspace
No description given
-
Question in joshua's workspace
No description given
-
Question in joshua's workspace
No description given
-
Question in joshua's workspace
No description given
-
Question in joshua's workspace
No description given
-
Question in joshua's workspace
No description given
-
Question in Bill's workspace
Solve for $x$ and $y$: \[ \begin{eqnarray} a_1x+b_1y&=&c_1\\ a_2x+b_2y&=&c_2 \end{eqnarray} \]
The included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
-
Question in joshua's workspace
No description given