111 results for "acute".
-
Question in Luis's workspace
Esta es la pregunta para la semana 4 del curso MA100 en el LSE. Examina el material de los capítulos 7 y 8. A continuación se describe cómo se definió un polinomio en la pregunta. Esto puede ser útil para cualquier persona que necesite editar esta pregunta.
Para las partes a a c, utilizamos un polinomio definido como m * (x ^ 4 - 2a ^ 2 x ^ 2 + a ^ 4 + b), donde las variables "a" y "b" se seleccionan al azar de un conjunto de tamaño reajustable, y la variable $ m $ se elige aleatoriamente del conjunto {+1, -1}. Podemos ver fácilmente que este polinomio tiene puntos estacionarios en -a, 0 y a. Introdujimos la variable "m" para que estos puntos estacionarios no siempre tuvieran la misma clasificación. La variable "b" es siempre positiva, y esto asegura que nuestro polinomio no cruce el eje x. Los primeros y segundos derivados; puntos estacionarios; la evaluación de la segunda derivada en los puntos estacionarios; la clasificación de los puntos estacionarios; y las intersecciones de los ejes se pueden expresar fácilmente en términos de las variables "a", "b" y "m". En efecto,
-
Question in cormac's workspace
Two questions testing the application of the Cosine Rule when given two sides and an angle. In these questions, the triangle is always acute and both of the given side lengths are adjacent to the given angle.
-
Question in Blathnaid's workspace
Two questions testing the application of the Cosine Rule when given two sides and an angle. In these questions, the triangle is always acute and both of the given side lengths are adjacent to the given angle.
-
Question in Blathnaid's workspace
Two questions testing the application of the Sine Rule when given two angles and a side. In this question the triangle is obtuse. In one question, the two given angles are both acute. In the second, one of the angles is obtuse.
-
Question in Blathnaid's workspace
A question testing the application of the Cosine Rule when given three side lengths. In this question, the triangle is always acute. A secondary application is finding the area of a triangle.
-
Question in Blathnaid's workspace
Two questions testing the application of the Sine Rule when given two angles and a side. In this question, the triangle is always acute.
-
Question in Katy's workspace
A question testing the application of the Cosine Rule when given three side lengths. In this question, the triangle is always acute. A secondary application is finding the area of a triangle.
-
Question in Katy's workspace
Two questions testing the application of the Sine Rule when given two sides and an angle. In this question, the triangle is always acute and one of the given side lengths is opposite the given angle.
-
Exam (1 question) in Blathnaid's workspace
Given two numbers, find the gcd, then use Bézout's algorithm to find $s$ and $t$ such that $as+bt=\operatorname{gcd}(a,b)$.
Finally, find all solutions of an equation $\mod b$.
-
Exam (13 questions) in Mauricio's workspace
Test de ecuaciones: Lineales, cuadráticas, exponenciales y logarítmicas.
-
Exam (12 questions) in Mauricio's workspace
Este test evalúa las propiedades básicas de los logaritmos
-
Question in Ricardo's workspace
Manipulación de expresiones algebraicas
-
Exam (10 questions) in Ricardo's workspace
Este test contiene ecuaciones de fracciones algebraicas, ecuaciones logarítmicas, ecuaciones exponenciales y ecuaciones cuadráticas.
-
Exam (1 question) in Andrew's workspace
Given two numbers, find the gcd, then use Bézout's algorithm to find $s$ and $t$ such that $as+bt=\operatorname{gcd}(a,b)$.
Finally, find all solutions of an equation $\mod b$.
-
Question in Marlon's workspace
multiple choice testing sin, cos, tan of random(pi/6, pi/4, pi/3) radians
-
Question in Clare's workspace
Two questions testing the application of the Cosine Rule when given two sides and an angle. In these questions, the triangle is always acute and both of the given side lengths are adjacent to the given angle.
-
Exam (4 questions) in Rachel's workspace
Exam about types of angle - acute, right, obtuse, reflex.
-
Question in Tst
multiple choice testing csc, sec, cot of random(pi/6, pi/4, pi/3) radians
-
Question in Robert's workspace
A question testing the application of the Cosine Rule when given three side lengths. In this question, the triangle is always acute. A secondary application is finding the area of a triangle.
-
Question in Robert's workspace
A question testing the application of the Cosine Rule when given three side lengths. In this question, the triangle is always acute. A secondary application is finding the area of a triangle.
-
Exam (1 question) in mathcentre
Given two numbers, find the gcd, then use Bézout's algorithm to find $s$ and $t$ such that $as+bt=\operatorname{gcd}(a,b)$.
Finally, find all solutions of an equation $\mod b$.