129 results for "stationary".
-
Question in Numbas Lærerutdanningen 8 - 13
Finding the stationary points of a cubic with two turning points
-
Question in Pretoria GEF Support Material
Finding the stationary points of a cubic with two turning points
-
Question in Numbas Lærerutdanningen 8 - 13
Finding the stationary points of a cubic with two turning points
-
Question in Morten's workspace
Finding the stationary points of a cubic with two turning points
-
Question in Numbas Lærerutdanningen 8 - 13
Finding the stationary points of a cubic with two turning points
-
Question in Narvik
Finding the stationary points of a cubic with two turning points
-
Question in Matematická analýza 2
Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.
-
Question in sinus kap 7
Finding the stationary points of a cubic with two turning points
-
Question in Kjell's workspace
Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.
-
Question in Ida Friestad's workspace
Finding the stationary points of a cubic with two turning points
-
Question in Narvik
Finding the stationary points of a cubic with two turning points
-
Exam (3 questions) in Nick's workspace
3 questions. Finding the stationary points of functions of 2 variables.
Partial differentiation.
-
Question in Ida Friestad's workspace
Finding the stationary points of a cubic with two turning points
-
Question in Ida Friestad's workspace
Finding the stationary points of a cubic with two turning points
-
Question in Ida Friestad's workspace
Finding the stationary points of a cubic with two turning points
-
Question in Paul's workspace
$I$ compact interval. $\displaystyle g: I\rightarrow I, g(x)=\frac{x^2}{(x-c)^{a/b}}$. Are there stationary points and local maxima, minima? Has $g$ a global max, global min?
-
Question in Paul's workspace
$g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
-
Question in Paul's workspace
$I$ compact interval, $g:I\rightarrow I$, $g(x)=(x-a)(x-b)^2$. Stationary points in interval. Find local and global maxima and minima of $g$ on $I$.
-
Question in Paul's workspace
$I$ compact interval, $g:I\rightarrow I,\;g(x)=ax^3+bx^2+cx+d$. Find stationary points, local and global maxima and minima of $g$ on $I$
-
Question in Paul's workspace
$I$ compact interval, $g:I\rightarrow I,\;g(x)=ax^3+bx^2+cx+d$. Find stationary points, local and global maxima and minima of $g$ on $I$
-
Question in Tore's workspace
Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.
-
Exam (3 questions) in mathcentre
3 questions. Finding the stationary points of functions of 2 variables.
Partial differentiation.
-
Exam (3 questions) in Maths Support Wiki
3 questions. Finding the stationary points of functions of 2 variables.
Partial differentiation.
-
Question in vijay's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in Bill's workspace
$I$ compact interval, $g:I\rightarrow I,\;g(x)=ax^3+bx^2+cx+d$. Find stationary points, local and global maxima and minima of $g$ on $I$
-
Question in Bill's workspace
$I$ compact interval, $g:I\rightarrow I$, $g(x)=(x-a)(x-b)^2$. Stationary points in interval. Find local and global maxima and minima of $g$ on $I$.
-
Question in Bill's workspace
$g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
-
Question in Bill's workspace
$I$ compact interval. $\displaystyle g: I \rightarrow I, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
-
Question in Bill's workspace
$I$ compact interval. $\displaystyle g: I\rightarrow I, g(x)=\frac{x^2}{(x-c)^{a/b}}$. Are there stationary points and local maxima, minima? Has $g$ a global max, global min?
-
Question in Morten's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.