384 results for "variables".
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question in Assessment Exercises
Evaluate $\int_1^{\,m}(ax ^ 2 + b x + c)^2\;dx$, $\int_0^{p}\frac{1}{x+d}\;dx,\;\int_0^\pi x \sin(qx) \;dx$, $\int_0^{r}x ^ {2}e^{t x}\;dx$
-
Question in How-tos
This question shows how to pick a GeoGebra worksheet to show to the student from a list, based on the value of a question variable.
-
Question in Linear Algebra 1st year
In this demo question, you can see either 2 or 3 gaps depending on the variable \(m\), and the marking algorithm doesn't penalise for the empty third gap in cases when it is not shown.
Reason to use it: for vectors or matrices containing only numbers, one can easily use matrix entry to account for a random size of an answer. But this does not work for mathematical expressions. There we have to give each entry of the vector as a separate gap, which then becomes a problem when the size varies. This solves that problem. For this reason I've included two parts: one very simple one that just shows the phenomenon of variable number of gaps, and one which is more like why I needed it.
Note that to resolve the fact that when \(m=2\), the point for the third gap cannot be earned, I have made it so that the student only gets 0 or all points, when all shown gaps are correctly filled in.
Note the use of Ax[m-1] in the third gap "correct answer" of part b): if you use Ax[2], then it will throw an error when m=2, as then Ax won't have the correct size. So even though the marking algorithm will ignore it, the question would still not work.
Bonus demo if you look in the variables: A way to automatically generate the correct latex code for \(\var{latexAx}\), since it's a variable size. I would usually need that in the "Advice", i.e. solutions, rather than the question text.
-
Question in Linear Algebra 1st year
In this demo question, you can see either 2 or 3 gaps depending on the variable \(m\), and the marking algorithm doesn't penalise for the empty third gap in cases when it is not shown.
Reason to use it: for vectors or matrices containing only numbers, one can easily use matrix entry to account for a random size of an answer. But this does not work for mathematical expressions. There we have to give each entry of the vector as a separate gap, which then becomes a problem when the size varies. This solves that problem. For this reason I've included two parts: one very simple one that just shows the phenomenon of variable number of gaps, and one which is more like why I needed it.
Note that to resolve the fact that when \(m=2\), the point for the third gap cannot be earned, I have made it so that the student only gets 0 or all points, when all shown gaps are correctly filled in.
Note the use of Ax[m-1] in the third gap "correct answer" of part b): if you use Ax[2], then it will throw an error when m=2, as then Ax won't have the correct size. So even though the marking algorithm will ignore it, the question would still not work.
Bonus demo if you look in the variables: A way to automatically generate the correct latex code for \(\var{latexAx}\), since it's a variable size. I would usually need that in the "Advice", i.e. solutions, rather than the question text.
-
Question in Linear Algebra 1st year
Solving a system of three linear equations in 3 unknowns using Gaussian Elimination (or Gauss-Jordan algorithm) in 5 stages. Solutions are all integers. Set up so that sometimes it has infinitely many solutions (one free variable), sometimes unique solution. Scaffolded so meant for formative. The variable d determines the cases (d=1: unique solution, d-0: infinitely many solutions). The other variables are set up so that no entries become zero for some randomisations but not others.
-
Question in Linear Algebra 1st year
Finding a matrix from a formula for each entry, which involves the row and column numbers of that entry. Not randomized because it's the same as in our workbook. But the variables are made in a way that it should be easy to randomise the size of the matrix, and the to change the formula for the input in not too many places.
-
Question in Linear Algebra 1st year
This allows the student to input a linear system in augmented matrix form (max rows 5, but any number of variables). Then the student can decide to swap some rows, or multiply some rows, or add multiples of one row to other rows. The student only has to input what operation should be performed, and this is automatically applied to the system. This question has no marks and no feedback as it's just meant as a "calculator".
-
Question in How-tos
Demonstrates how to create variables containing LaTeX commands, and how to use them in the question text.
-
Question in How-tos
Use attributes of the form
eval-<name>to dynamically set an attribute on an element based on question variables. -
Question in How-tos
Demonstrates that the marking algorithm for "match text pattern" parts doesn't put quotes around substituted strings any more.
-
Question in Content created by Newcastle University
Simple probability question. Counting number of occurrences of an event in a sample space with given size and finding the probability of the event.
-
Question in GlobalGuruFor using as a practice in solving system of linear equations in two variables.
-
Question in Content created by Newcastle University
Application of the Poisson distribution given expected number of events per interval.
Finding probabilities using the Poisson distribution.
-
Question in Denis's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Marie's Logic workspace
Demonstrates how to create variables containing LaTeX commands, and how to use them in the question text.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question in Marie's Logic workspace
Create a truth table with 3 logic variables to see if two logic expressions are equivalent.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Content created by Newcastle University
Given a probability mass function $P(X=i)$ with outcomes $i \in \{0,1,2,\ldots 8\}$, find the expectation $E$ and $P(X \gt E)$.
-
Question in JSXGraph
Given a graph of a line of the form $y=ax+b$ where $a$ and $b$ are integers, find the equation of the line. The y-intercept is given.
-
Question in Gareth's workspace
Given a graph of a line of the form $y=ax+b$ where $a$ and $b$ are integers, find the equation of the line. The y-intercept is given.
-
Question in Bill's workspace
Solve for $x(t)$, $\displaystyle\frac{dx}{dt}=\frac{a}{(x+b)^n},\;x(0)=0$
-
Question in Content created by Newcastle University
Application of the binomial distribution given probabilities of success of an event.
Finding probabilities using the binomial distribution.
-
Question in Jos's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Jos's workspace
Template question. The student is asked to perform a two factor ANOVA to test the null hypotheses that the measurement does not depend on each of the factors, and that there is no interaction between the factors.