374 results for "variables".
-
Question in GlobalGuruFor using as a practice in solving system of linear equations in two variables.
-
Question in Content created by Newcastle University
Application of the Poisson distribution given expected number of events per interval.
Finding probabilities using the Poisson distribution.
-
Question in Denis's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Marie's Logic workspace
Demonstrates how to create variables containing LaTeX commands, and how to use them in the question text.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Marie's Logic workspace
Create a truth table with 3 logic variables to see if two logic expressions are equivalent.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question in Content created by Newcastle University
Given a probability mass function $P(X=i)$ with outcomes $i \in \{0,1,2,\ldots 8\}$, find the expectation $E$ and $P(X \gt E)$.
-
Question in JSXGraph
Given a graph of a line of the form $y=ax+b$ where $a$ and $b$ are integers, find the equation of the line. The y-intercept is given.
-
Question in Gareth's workspace
Given a graph of a line of the form $y=ax+b$ where $a$ and $b$ are integers, find the equation of the line. The y-intercept is given.
-
Question in Bill's workspace
Solve for $x(t)$, $\displaystyle\frac{dx}{dt}=\frac{a}{(x+b)^n},\;x(0)=0$
-
Question in Content created by Newcastle University
Application of the binomial distribution given probabilities of success of an event.
Finding probabilities using the binomial distribution.
-
Question in Jos's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Jos's workspace
Template question. The student is asked to perform a two factor ANOVA to test the null hypotheses that the measurement does not depend on each of the factors, and that there is no interaction between the factors.
-
Question in Joël's workspace
Factorise polynomials by identifying common factors. The first expression has a constant common factor; the rest have common factors involving variables.
-
Question in Patricio's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Jos's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Jos's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Patricio's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Algebra Mat140
Crear una tabla de verdad para una expresión lógica de la forma :
$( a \ {op1} \ b) \ {op2} \ (c \ {op} \ d) \ {op4} \ e $
donde cada una de $a, \; b, \; c, \; d, \; e, \; f $ puede ser una de las variables booleanas $ p, \; q, \; \neg q, \; \neg p $ y cada uno de los operados $\{op}$ puede ser uno de los operadores $\lor, \; \land, \; \to$.
Por ejemplo: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$ -
Question in Lógica y Cuantificadores
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Tom's workspace
A simple ideal gas law question, using number of molecules, that asks the student to calculate one of the four variables. he question can ask for either L atm, or kPa m3, and either K or C for temp. As such the boltzmann constant is in either J/K or L atm/K.
-
Question in Linear Programming
Given a linear programming problem in standard form, write down the dual problem.
-
Question in Content created by Newcastle University
Given a linear programming problem in standard form, write down the dual problem.
-
Question in Content created by Newcastle University
Given a linear programming problem in standard form, write down the dual problem.
-
Question in Bill's workspace
Nature of fixed points of a 2D dynamical system.
These examples are either centres or spirals.