154 results.
-
Question in Content created by Newcastle University
Differentiate the function $(a + b x)^m e ^ {n x}$ using the product rule.
-
Question in Content created by Newcastle University
Differentiate $ (a+bx) ^ {m} \sin(nx)$
-
Question in Content created by Newcastle University
Differentiate the following functions: $\displaystyle x ^ n \sinh(ax + b),\;\tanh(cx+d),\;\ln(\cosh(px+q))$
-
Question in Content created by Newcastle University
Differentiate the following functions: $\displaystyle x ^ n \sinh(ax + b),\;\tanh(cx+d),\;\ln(\cosh(px+q))$
-
Question in Content created by Newcastle University
Differentiate $x^m\cos(ax+b)$
-
Question in Content created by Newcastle University
Differentiate $ \sin(ax+b) e ^ {nx}$.
-
Question in Content created by Newcastle University
Differentiate $\displaystyle e^{ax^{m} +bx^2+c}$
-
Question in Content created by Newcastle University
Differentiate the following functions: $\displaystyle x ^ n \sinh(ax + b),\;\tanh(cx+d),\;\ln(\cosh(px+q))$
-
Question in Content created by Newcastle University
Given $f(x)=(x+b)^n$. Find the gradient and equation of the chord between $(a,f(a))$ and $(a+h,f(a+h))$ for randomised values of $a$, $b$ and $h$.
-
Question in Content created by Newcastle University
Approximate $f(x)=(a+h)^{m/n}$ by $f(a)+hf^{\prime}(a)$ to 5 decimal places and compare with true value.
-
Question in Content created by Newcastle University
Solve: $\displaystyle \frac{d^2y}{dx^2}+2a\frac{dy}{dx}+(a^2+b^2)y=0,\;y(0)=1$ and $y'(0)=c$.
-
Question in Content created by Newcastle University
Solve: $\displaystyle \frac{d^2y}{dx^2}+2a\frac{dy}{dx}+a^2y=0,\;y(0)=c$ and $y(1)=d$. (Equal roots example).
-
Question in Content created by Newcastle University
Find the first 3 terms in the Taylor series at $x=c$ for $f(x)=(a+bx)^{1/n}$ i.e. up to and including terms in $x^2$.
-
Question in Content created by Newcastle University
Complete the square for a quadratic polynomial $q(x)$ by writing it in the form $a(x+b)^2+c$. Find both roots of the equation $q(x)=0$.
-
Question in Transition to university
Find the inverse of a composite function by finding the inverses of two functions and then the composite of these; and by finding the composite of two functions then finding the inverse. The question then concludes by asking students to compare their two answers and verify they're equivalent.
-
Question in Bill's workspace
Write down the Newton-Raphson formula for finding a numerical solution to the equation $e^{mx}+bx-a=0$. If $x_0=1$ find $x_1$.
Included in the Advice of this question are:
6 iterations of the method.
Graph of the NR process using jsxgraph. Also user interaction allowing change of starting value and its effect on the process.
-
Question in Julie's workspace
Find $\displaystyle \int \sin(x)(a+ b\cos(x))^{m}\;dx$
-
Question in Julie's workspace
Find $\displaystyle \int ae ^ {bx}+ c\sin(dx) + px ^ {q}\;dx$.
-
Question in Julie's workspace
Find $\displaystyle \int\frac{ax+b}{(1-x^2)^{1/2}} \;dx$. Solution involves inverse trigonometric functions.
rebelmaths
-
Question in Julie's workspace
Find the general solution of $y''+2py'+(p^2-q^2)y=x$ in the form $Ae^{ax}+Be^{bx}+y_{PI}(x),\;y_{PI}(x)$ a particular integral.
rebelmaths
-
Question in David's workspace
Area and Perimeter of Rectangles
rebelmaths
-
Question in David's workspace
Areas of triangles
rebelmaths
-
Question in David's workspace
Circumference and area of a circle
rebelmaths
-
Question in Calculus
Differentiate $\displaystyle (ax^m+b)^{n}$.
-
Question in Functions and Graphs
Matching a straight line graph to its equation.
-
Question in Tore's workspace
Finn det stasjonære punktet $(p,q)$ til funksjonen: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Finn verdiene til $f(p,q)$.
-
Question in Tore's workspace
Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.
-
Question in Christian's workspace
Instructions on dealing with functions in Numbas.
-
Question in vijay's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in Daniel's workspace
Find the general solution of $y''+2py'+(p^2-q^2)y=A\sin(fx)$ in the form $A_1e^{ax}+B_1e^{bx}+y_{PI}(x),\;y_{PI}(x)$ a particular integral. Use initial conditions to find $A_1,B_1$.