1588 results for "form".
-
Question in MAT333
Factorise $x^2+bx+c$ into 2 distinct linear factors and then find $\displaystyle \int \frac{a}{x^2+bx+c }\;dx$ using partial fractions or otherwise.
-
Question in MAT333
Find $\displaystyle \int \frac{2ax + b}{ax ^ 2 + bx + c}\;dx$
-
Question in MAT333
Find $\displaystyle \int \frac{2ax + b}{ax ^ 2 + bx + c}\;dx$
-
Question in MAT333
Find $\displaystyle \int \frac{2ax + b}{ax ^ 2 + bx + c}\;dx$
-
Question in MAT333
Find $\displaystyle \int x(a x ^ 2 + b)^{m}\;dx$
-
Question in MAT333
Find $\displaystyle \int \frac{a}{(bx+c)^n}\;dx$
-
Question in MAT333
Find $\displaystyle \int ae ^ {bx}+ c\sin(dx) + px ^ {q}\;dx$.
-
Question in MAT333
Find $\displaystyle I=\int \frac{2 a x + b} {a x ^ 2 + b x + c}\;dx$ by substitution or otherwise.
-
Question in MAT333
The derivative of $\displaystyle \frac{ax^2+b}{cx^2+d}$ is $\displaystyle \frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.
-
Question in MAT333
The derivative of $\displaystyle \frac{ax+b}{\sqrt{cx+d}}$ is $\displaystyle \frac{g(x)}{2(cx+d)^{3/2}}$. Find $g(x)$.
-
Question in MAT333
The derivative of $\displaystyle \frac{ax+b}{cx^2+dx+f}$ is $\displaystyle \frac{g(x)}{(cx^2+dx+f)^2}$. Find $g(x)$.
-
Question in MAT333
The derivative of $\displaystyle \frac{ax+b}{cx^2+dx+f}$ is $\displaystyle \frac{g(x)}{(cx^2+dx+f)^2}$. Find $g(x)$.
-
Question in MAT333
The derivative of $\displaystyle \frac{a+be^{cx}}{b+ae^{cx}}$ is $\displaystyle \frac{pe^{cx}} {(b+ae^{cx})^2}$. Find $p$.
-
Question in MAT333
The derivative of $\displaystyle \frac{a+be^{cx}}{b+ae^{cx}}$ is $\displaystyle \frac{pe^{cx}} {(b+ae^{cx})^2}$. Find $p$.
-
Question in Algebra Mat140
Other method. Find $p,\;q$ such that $\displaystyle \frac{ax+b}{cx+d}= p+ \frac{q}{cx+d}$. Find the derivative of $\displaystyle \frac{ax+b}{cx+d}$.
-
Question in MAT333
3 Repeated integrals of the form $\int_a^b\;dx\;\int_c^{f(x)}g(x,y)\;dy$ where $g(x,y)$ is a polynomial in $x,\;y$ and $f(x)$ is a degree 0, 1 or 2 polynomial in $x$.
-
Question in MAT333
Calculate a repeated integral of the form $\displaystyle I=\int_0^1\;dx\;\int_0^{x^{m-1}}mf(x^m+a)dy$
The $y$ integral is trivial, and the $x$ integral is of the form $g'(x)f'(g(x))$, so it straightforwardly integrates to $f(g(x))$.
-
Question in Algebra Mat140
Solve for $x$: $\displaystyle ax ^ 2 + bx + c=0$.
Entering the correct roots in any order is marked as correct. However, entering one correct and the other incorrect gives feedback stating that both are incorrect.
-
Question in MAT333
Calculate a repeated integral of the form $\displaystyle I=\int_0^1\;dx\;\int_0^{x^{m-1}}mf(x^m+a)dy$
The $y$ integral is trivial, and the $x$ integral is of the form $g'(x)f'(g(x))$, so it straightforwardly integrates to $f(g(x))$.
-
Question in MAT333
Multiple response question (2 correct out of 4) covering properties of Riemann integration. Selection of questions from a pool.
-
Question in Algebra Mat140
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Algebra Mat140
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Algebra Mat140
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question in Algebra Mat140
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Algebra Mat140
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question in Algebra Mat140
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Algebra Mat140
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Algebra Mat140
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Algebra Mat140
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question in Fourier & Maclaurin series questions
Calculating particular harmonic components of a Fourier series expansion.