13325 results.
-
Question in Christian's workspace
Information on inputting powers
-
Question in Christian's workspace
Inputting algebraic expressions into Numbas.
-
Question in Christian's workspace
Instructions on inputting ratios of algebraic expressions.
-
Question in Christian's workspace
Instructions on dealing with functions in Numbas.
-
Question in Christian's workspace
$A$ a $3 \times 3$ matrix. Using row operations on the augmented matrix $\left(A | I_3\right)$ reduce to $\left(I_3 | A^{-1}\right)$.
-
Exam (1 question) in Christian's workspace
No description given
-
Question in Christian's workspace
Find the determinant and inverse of three $2 \times 2$ invertible matrices.
-
Question in Christian's workspace
No description given
-
Question in Christian's workspace
Given a codeword in $w=\mathbb{Z}^4_3$ find and list all codewords at Hamming distance $1$ from $w$.
-
Question in Christian's workspace
Vetnet question.
-
Question in Christian's workspace
No description given
-
Question in Christian's workspace
Paired t-test to see if there is a difference between responses after treatment.
-
Question in Habiba's workspace
No description given
-
Question in vijay's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in Katie's workspace
Finding the volumes of basic 3D shapes
-
Question in YJ's workspace
Customised for the Numbas demo exam
Factorise $x^2+cx+d$ into 2 distinct linear factors and then find $\displaystyle \int \frac{ax+b}{x^2+cx+d}\;dx,\;a \neq 0$ using partial fractions or otherwise.
Video in Show steps.
-
Question in YJ's workspace
Template question. The student is asked to perform a two factor ANOVA to test the null hypotheses that the measurement does not depend on each of the factors, and that there is no interaction between the factors.
-
Question in Katie's workspace
Finding lengths of sides of triangles
-
Question in Peter's workspace
Removed the variability.
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question in joshua's workspace
No description given
-
Question in joshua's workspace
No description given
-
Question in Katie's workspace
Coverting back from standard form
-
Question in Keith's workspace
Testing an hypothesis about the mean of one group.
-
Question in Keith's workspace
Testing an hypothesis about the mean of one group.
-
Question in Tony's workspace
A simultaneous equations question with integers only