349 results for "change".
-
Question in Content created by Newcastle University
Given 32 datapoints in a table find their minimum, lower quartile, median, upper quartile, and maximum.
-
Question in Content created by Newcastle University
$A$ a $3 \times 3$ matrix. Using row operations on the augmented matrix $\left(A | I_3\right)$ reduce to $\left(I_3 | A^{-1}\right)$.
-
Question in Content created by Newcastle University
$x_n=\frac{an+b}{cn+d}$. Find the least integer $N$ such that $\left|x_n -\frac{a}{c}\right| \le 10 ^{-r},\;n\geq N$, $2\leq r \leq 6$.
-
Question in Content created by Newcastle University
Find (hyperbolic substitution):
$\displaystyle \int_{b}^{2b} \left(\frac{1}{\sqrt{a^2x^2-b^2}}\right)\;dx$ -
Question in Content created by Newcastle University
Calculate definite integrals: $\int_0^\infty\;e^{-ax}\,dx$, $\int_1^2\;\frac{1}{x^{b}}\,dx$, $\; \int_0^{\pi}\;\cos\left(\frac{x}{2n}\right)\,dx$
-
Question in Content created by Newcastle University
Find $\displaystyle\int \frac{ax^3-ax+b}{1-x^2}\;dx$. Input constant of integration as $C$.
-
Question in Content created by Newcastle University
Find $\displaystyle \int \frac{nx^3+mx^2+nx + p}{1+x^2}\;dx$. Solution involves $\arctan$.
-
Question in Content created by Newcastle University
Find (hyperbolic substitution):
$\displaystyle \int_{b}^{2b} \left(\frac{1}{\sqrt{a^2x^2-b^2}}\right)\;dx$ -
Question in Content created by Newcastle University
Find $\displaystyle \int\frac{ax^3+ax+b}{1+x^2}\;dx$. Enter the constant of integration as $C$.
-
Question in Content created by Newcastle University
Find $\displaystyle \int \frac{nx^3+mx^2+nx + p}{1+x^2}\;dx$. Solution involves $\arctan$.
-
Question in Content created by Newcastle University
Find $\displaystyle \int\frac{ax^3+ax+b}{1+x^2}\;dx$. Enter the constant of integration as $C$.
-
Question in Content created by Newcastle University
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question in Content created by Newcastle University
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $ and hence find $\displaystyle \int (ax+b)^2\sin(cx+d)\; dx $
-
Question in Content created by Newcastle University
Find $\displaystyle \int ax ^ m+ bx^{c/n}\;dx$.
-
Question in Content created by Newcastle University
Find $\displaystyle \int ae ^ {bx}+ c\sin(dx) + px ^ {q}\;dx$.
-
Question in Content created by Newcastle University
Find $\displaystyle \int \frac{a}{(bx+c)^n}\;dx$
-
Question in Content created by Newcastle University
Implicit differentiation.
Given $x^2+y^2+ax+by=c$ find $\displaystyle \frac{dy}{dx}$ in terms of $x$ and $y$.
-
Question in Content created by Newcastle University
Find $\displaystyle \int x\sin(cx+d)\;dx,\;\;\int x\cos(cx+d)\;dx $ and hence $\displaystyle \int ax\sin(cx+d)+bx\cos(cx+d)\;dx$
-
Question in Content created by Newcastle University
Integrating by parts.
Find $ \int ax\sin(bx+c)\;dx$ or $\int ax e^{bx+c}\;dx$
-
Question in Content created by Newcastle University
Determine if the following describes a probability mass function.
$P(X=x) = \frac{ax+b}{c},\;\;x \in S=\{n_1,\;n_2,\;n_3,\;n_4\}\subset \mathbb{R}$.
-
Question in Content created by Newcastle University
Express $\displaystyle \frac{ax+b}{x + c} \pm \frac{dx+p}{x + q}$ as an algebraic single fraction over a common denominator.
-
Question in Content created by Newcastle University
Express $\displaystyle \frac{ax+b}{cx + d} \pm \frac{rx+s}{px + q}$ as an algebraic single fraction over a common denominator.
-
Question in Content created by Newcastle University
A question testing the application of the Cosine Rule when given three side lengths. In this question, the triangle is always acute. A secondary application is finding the area of a triangle.
-
Question in Content created by Newcastle University
Two questions testing the application of the Sine Rule when given two sides and an angle. In this question, the triangle is always acute and one of the given side lengths is opposite the given angle.
-
Question in Content created by Newcastle University
The derivative of $\displaystyle \frac{ax+b}{cx^2+d}$ is of the form $\displaystyle \frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.
-
Question in Content created by Newcastle University
The derivative of $\displaystyle \frac{a+be^{cx}}{b+ae^{cx}}$ is $\displaystyle \frac{pe^{cx}} {(b+ae^{cx})^2}$. Find $p$.
-
Question in Content created by Newcastle University
The derivative of $\displaystyle \frac{ax+b}{\sqrt{cx+d}}$ is $\displaystyle \frac{g(x)}{2(cx+d)^{3/2}}$. Find $g(x)$.
-
Question in Content created by Newcastle University
The derivative of $\displaystyle \frac{ax^2+b}{cx^2+d}$ is $\displaystyle \frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.
-
Question in Content created by Newcastle University
Find modulus and argument of two complex numbers. Then use De Moivre's Theorem to find negative powers of the complex numbers.
-
Question in Content created by Newcastle University
Eight questions on finding least upper bounds and greatest lower bounds of various sets.