2197 results for "find".
-
Question in Algebra Mat140
Given polynomial $f(X)$, $g(X)$ over $\mathbb{Q}$, find polynomials $q(X)$ and $r(X)$ over $\mathbb{Q}$ such that $f(X)=q(X)g(X)+r(X)$ and $\operatorname{deg}r(X) \lt \operatorname{deg}g(X)$.
-
Question in Algebra Mat140
$f(X)$ and $g(X)$ are polynomials over $\mathbb{Z}_n$.
Find their greatest common divisor (GCD) and enter it as a monic polynomial.
Hence factorize $f(X)$ into irreducible factors.
-
Question in MAT333
Find the equation of the straight line which passes through the points $(a,b)$ and $(c,d)$.
-
Question in MAT333
Find the equation of the straight line perpendicular to the given line that passes through the given point $(a,b)$.
-
Question in MAT333
Finding the coordinates and determining the nature of the stationary points on a polynomial function
-
Question in MAT333
No description given
-
Question in MAT333
No description given
-
Question in MAT333
No description given
-
Question in MAT333
Using simple substitution to find $\lim_{x \to a} bx+c$, $\lim_{x \to a} bx^2+cx+d$ and $\displaystyle \lim_{x \to a} \frac{bx+c}{dx+f}$ where $d\times a+f \neq 0$.
-
Question in MAT333
Find $\displaystyle \int\frac{ax^3+ax+b}{1+x^2}\;dx$. Enter the constant of integration as $C$.
-
Question in MAT333
Find $\displaystyle \int\frac{ax^3+ax+b}{1+x^2}\;dx$. Enter the constant of integration as $C$.
-
Question in MAT333
Find $\displaystyle \int \frac{nx^3+mx^2+px +m}{x^2+1} \;dx$
-
Question in MAT333
Find $\displaystyle \int \frac{nx^3+mx^2+nx + p}{1+x^2}\;dx$. Solution involves $\arctan$.
-
Question in MAT333
Find $\displaystyle\int \frac{ax^3-ax+b}{1-x^2}\;dx$. Input constant of integration as $C$.
-
Question in MAT333
Find $\displaystyle \int \frac{c}{\sqrt{a-bx^2}}\;dx$. Solution involves the inverse trigonometric function $\arcsin$.
-
Question in MAT333
Find $\displaystyle \int \frac{c}{\sqrt{a-bx^2}}\;dx$. Solution involves the inverse trigonometric function $\arcsin$.
-
Question in MAT333
Find $\displaystyle \int \sin(x)(a+ b\cos(x))^{m}\;dx$
-
Question in MAT333
Implicit differentiation.
Given $x^2+y^2+ax+by=c$ find $\displaystyle \frac{dy}{dx}$ in terms of $x$ and $y$.
-
Question in MAT333
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question in MAT333
Find $\displaystyle \int x\sin(cx+d)\;dx,\;\;\int x\cos(cx+d)\;dx $ and hence $\displaystyle \int ax\sin(cx+d)+bx\cos(cx+d)\;dx$
-
Question in MAT333
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in MAT333
Find $\displaystyle\int \frac{ax+b}{(x+c)(x+d)}\;dx,\;a\neq 0,\;c \neq d $.
-
Question in MAT333
Find $\displaystyle\int \frac{ax+b}{(x+c)(x+d)}\;dx,\;a\neq 0,\;c \neq d $.
-
Question in MAT333
Factorise $x^2+cx+d$ into 2 distinct linear factors and then find $\displaystyle \int \frac{ax+b}{x^2+cx+d}\;dx,\;a \neq 0$ using partial fractions or otherwise.
-
Question in MAT333
Factorise $x^2+bx+c$ into 2 distinct linear factors and then find $\displaystyle \int \frac{a}{x^2+bx+c }\;dx$ using partial fractions or otherwise.
-
Question in MAT333
Find $\displaystyle \int\frac{ax^3+ax+b}{1+x^2}\;dx$. Enter the constant of integration as $C$.
-
Question in MAT333
Find $\displaystyle \int \frac{2ax + b}{ax ^ 2 + bx + c}\;dx$
-
Question in MAT333
Find $\displaystyle \int \frac{2ax + b}{ax ^ 2 + bx + c}\;dx$
-
Question in MAT333
Find $\displaystyle \int \frac{2ax + b}{ax ^ 2 + bx + c}\;dx$
-
Question in MAT333
Find $\displaystyle \int x(a x ^ 2 + b)^{m}\;dx$