391 results for "cos".
-
Question in Standard Maths
Studnents are asked to write down equations for cost and income for a business.
They are then asked to graph the two lines.
-
Question in Standard Maths
Students are shown a graph that simultaneously plots cost and revenue lines. They are asked to identify the break-even point.
They are asked to give the x- and y- coordinate values.
The graph is randomised, but it is set up so that the point of intersection lies on gridlines.
-
Question in Bill's workspace
Find $\displaystyle \frac{d}{dx}\left(\frac{m\sin(ax)+n\cos(ax)}{b\sin(ax)+c\cos(ax)}\right)$. Three part question.
-
Question in Bill's workspace
Differentiate $f(x)=x^{m}\sin(ax+b) e^{nx}$.
The answer is of the form:
$\displaystyle \frac{df}{dx}= x^{m-1}e^{nx}g(x)$ for a function $g(x)$.Find $g(x)$.
-
Question in Bill's workspace
Find $\displaystyle \int \sin(x)(a+ b\cos(x))^{m}\;dx$
-
Question in Bill's workspace
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $ and hence find $\displaystyle \int (ax+b)^2\sin(cx+d)\; dx $
Also two other questions on integrating by parts.
-
Question in Bill's workspace
Solve for $x$: $a\cosh(x)+b\sinh(x)=c$. There are two solutions for this example.
-
Question in Bill's workspace
Differentiate the following functions: $\displaystyle x ^ n \sinh(ax + b),\;\tanh(cx+d),\;\ln(\cosh(px+q))$
-
Question in Bill's workspace
Find $\displaystyle \int\cosh(ax+b)\;dx,\;\;\int x\sinh(cx+d)\;dx$
-
Question in Bill's workspace
Find (hyperbolic substitution):
$\displaystyle \int_{b}^{2b} \left(\frac{1}{\sqrt{a^2x^2-b^2}}\right)\;dx$ -
Question in Bill's workspace
Differentiate $x^m\cos(ax+b)$
-
Question in Bill's workspace
Rotate $y=a(\cos(x)+b)$ by $2\pi$ radians about the $x$-axis between $x=c\pi$ and $x=(c+2)\pi$. Find the volume of revolution.
-
Question in Bill's workspace
Differentiate the following functions: $\displaystyle x ^ n \sinh(ax + b),\;\tanh(cx+d),\;\ln(\cosh(px+q))$
-
Question in Bill's workspace
Differentiate $\displaystyle \cos(e^{ax}+bx^2+c)$.
Contains a video solving a similar example.
-
Question in All questions
Standard simple integrals asked for (1/x, sin(x), cos(x), x^2, x, e^x)
-
Question in Andrew's workspace
No description given
-
Question in Andrew's workspace
Two questions testing the application of the Cosine Rule when given two sides and an angle. In these questions, the triangle is always acute and both of the given side lengths are adjacent to the given angle.
-
Question in Andrew's workspace
A question testing the application of the Cosine Rule when given three side lengths. In this question, the triangle is always acute. A secondary application is finding the area of a triangle.
-
Question in All questions
Four sinusoidal graphs are given. Student should select the one which is sine and cosine.
-
Question in MATH1011 practice questions and online tutorials
No description given
-
Question in MATH 6006_2019
Find $\displaystyle \int \sin(x)(a+ b\cos(x))^{m}\;dx$
-
Question in Anna's workspace
Calculate the local extrema of a function ${f(x) = e^{x/C1}(C2sin(x)-C3cos(x))}$
The graph of f(x) has to be identified.
The first derivative of f(x) has to be calculated.
The min max points have to be identified using the graph and/or calculated using the first derivative method. Requires solving trigonometric equation
-
Question in Wiskunde voor bedrijfswetenschappen ACalculate the competitive price as the minimum of the average cost, given a production function in one variable for a situation of perfect competition.
-
Question in Content created by Newcastle University
Find angle between plane $\Pi_1$, given by three points, and the plane $\Pi_2$ given in Cartesian form.
The calculation of $cos(\alpha)$ at the end of Advice has fractionNumbers switched on and so the result is presented as a fraction, which can be misleading. Best if calculation is followed through without using fractionNumbers.
-
Question in Content created by Newcastle University
Find the cosine of the angle between two pairs of 3D and 4D vectors.
The calculations and answers are correct, however the Advice should display the interim calculations of the lengths of vectors and their products to say 6dps. At present the student may be mislead into using 2dps at each stage - the instruction at the start of Advice is somewhat confusing.
-
Question in Content created by Newcastle University
No description given
-
Question in Content created by Newcastle University
Although the statement has 4 power stations and 3 pits, when the question is run sometimes 3 power stations are given and sometimes 4 pits.
-
Question in Content created by Newcastle University
Find the solution of a first order separable differential equation of the form $a\sin(x)y'=by\cos(x)$.
-
Question in Content created by Newcastle University
Find (hyperbolic substitution):
$\displaystyle \int_{b}^{2b} \left(\frac{1}{\sqrt{a^2x^2-b^2}}\right)\;dx$ -
Question in Content created by Newcastle University
Calculate definite integrals: $\int_0^\infty\;e^{-ax}\,dx$, $\int_1^2\;\frac{1}{x^{b}}\,dx$, $\; \int_0^{\pi}\;\cos\left(\frac{x}{2n}\right)\,dx$