557 results for "solving".
-
Exam (5 questions) in Marie's linear algebra workspace
Quiz to assess matrix addition, subtraction, multiplication and multiplication by scalar, determinants and inverses, solving a system of simultaneous equations.
-
Question in Chris's workspace
Solving 2nd order differential equation for pendulum, with and without damping.
-
Exam (5 questions) in Jane's workspace
No description given
-
Question in Progresiones Aritméticas
Solving arithmetic progressions using simultaneous equations
-
Question in Jos's workspace
Solve for $x$ and $y$: \[ \begin{eqnarray} a_1x+b_1y&=&c_1\\ a_2x+b_2y&=&c_2 \end{eqnarray} \]
The included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
-
Question in Joël's workspace
This question tests the student's ability to solve simple linear equations by elimination. Part a) involves only having to manipulate one equation in order to solve, and part b) involves having to manipulate both equations in order to solve.
-
Question in Content created by Newcastle University
Solving a system of three linear equations in 3 unknowns using Gauss Elimination in 4 stages. Solutions are all integral.
-
Question in Content created by Newcastle University
Student is given a set of constraints for a linear program. Asked to enter the constraints as inequalities, and then to identify the optimal solution.
Problem with solving the simultaneous equations gven by the constraints - too unwieldy and not given enough marks for doing so. Best if the point of intersection is given graphically by putting the mouse over the intersection.
-
Question in Algebra Mat140
Student is given a set of constraints for a linear program. Asked to enter the constraints as inequalities, and then to identify the optimal solution.
Problem with solving the simultaneous equations gven by the constraints - too unwieldy and not given enough marks for doing so. Best if the point of intersection is given graphically by putting the mouse over the intersection.
-
Question in joshua's workspace
No description given
-
Question in Lineare Algebra 1
Prove (by induction) that every value $\ge$ 44ct can be combined by using 5ct and 12ct stamps.
Idea seen in collection of exercises for preparing for the Putnam contest.
-
Question in Introduction to Calculus
Solve for $x$: $\log_{a}(x+b)- \log_{a}(x+c)=d$
-
Question in Introduction to Calculus
Given $\rho(t)=\rho_0e^{kt}$, and values for $\rho(t)$ for $t=t_1$ and a value for $\rho_0$, find $k$. (Two examples).
-
Question in Bill's workspace
Given $\rho(t)=\rho_0e^{kt}$, and values for $\rho(t)$ for $t=t_1$ and a value for $\rho_0$, find $k$. (Two examples).
-
Question in Introduction to Calculus
Solve for $x$ each of the following equations: $n^{ax+b}=m^{cx}$ and $p^{rx^2}=q^{sx}$.
-
Question in Introduction to Calculus
Solve for $x$: $\log(ax+b)-\log(cx+d)=s$
-
Question in Introduction to Calculus
Solve for $x$: $\displaystyle 2\log_{a}(x+b)- \log_{a}(x+c)=d$.
Make sure that your choice is a solution by substituting back into the equation.
-
Question in Introduction to Calculus
Solve for $x$: $c(a^2)^x + d(a)^{x+1}=b$ (there is only one solution for this example).
-
Question in COM281
Exercises in solving simultaneous equations with 2 variables.
-
Question in COM281
Semi-worked example of solving simultaneous equations using matrices. Equation values are randomly generated. The student is walked through the steps needed to solve the equations.
-
Exam (5 questions) in Standard Maths
Practise solving simultaneous linear equations graphically and algebraically.
-
Exam (7 questions) in Introduction to Calculus
Questions involving various techniques for rearranging and solving quadratic expressions and equations
-
Question in Miranda's workspace
Solve unknown on one side
-
Question in Jessica's workspace
Solve $\displaystyle ay + b = cy + d$ for $y$.
-
Question in Bill's workspace
Solve for $x$: $\log_{a}(x+b)- \log_{a}(x+c)=d$
-
Question in Bill's workspace
Solve for $x$: $\displaystyle 2\log_{a}(x+b)- \log_{a}(x+c)=d$.
Make sure that your choice is a solution by substituting back into the equation.
-
Question in Bill's workspace
Solve $\displaystyle ax + b = cx + d$ for $x$.
-
Question in Bill's workspace
Solve for $x$: $\displaystyle \frac{a} {bx+c} + d= s$
-
Question in Bill's workspace
Solve $\displaystyle ax + b =\frac{f}{g}( cx + d)$ for $x$.
A video is included in Show steps which goes through a similar example.
-
Question in Bill's workspace
The derivative of $\displaystyle \frac{ax^2+b}{cx^2+d}$ is $\displaystyle \frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.
Contains a video solving a similar quotient rule example. Although does not explicitly find $g(x)$ as asked in the question, but this is obvious.