374 results for "variables".
-
Question in How-tosThis question shows how to make the correct answer to a "choose one from a list" part depend on randomised question variables, in a couple of ways. The first part uses JME expressions to define the marks available for each choice. The second part uses the "custom marking matrix" option.
-
Question in Content created by Newcastle University
Given data on population mean and population standard deviation and three sampling sizes, calculate the probabilities that the sample means are within a specified distance from the population mean.
-
Question in Content created by Newcastle University
Given a linear combination $Y$ of three independent random variables with given means and variances, find the mean of variance of $Y$.
-
Question in Content created by Newcastle University
Given descriptions of 3 random variables, decide whether or not each is from a Poisson or Binomial distribution.
-
Question in Content created by Newcastle University
Given a random variable $X$ normally distributed as $\operatorname{N}(m,\sigma^2)$ find probabilities $P(X \gt a),\; a \gt m;\;\;P(X \lt b),\;b \lt m$.
-
Question in Content created by Newcastle University
Simple probability question. Counting number of occurences of an event in a sample space with given size and finding the probability of the event.
-
Question in Content created by Newcastle University
Choosing whether given random variables are qualitative or quantitative.
-
Question in Content created by Newcastle University
Independent events in probability. Choose whether given three given pairs of events are independent or not.
-
Question in Content created by Newcastle University
Finding probabilities from a survey giving a table of data on the alcohol consumption of males. This can be easily adapted to data from other types of surveys.
-
Question in Content created by Newcastle University
Uses the $\chi^2$ test to see if there is any significant difference in preferences.
-
Question in Content created by Newcastle University
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Content created by Newcastle University
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Content created by Newcastle University
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question in Content created by Newcastle University
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Content created by Newcastle University
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question in Content created by Newcastle University
Provided with information on a sample with sample mean and standard deviation, but no information on the population variance, use the t test to either accept or reject a given null hypothesis.
-
Question in Content created by Newcastle University
Given a random variable $X$ normally distributed as $\operatorname{N}(m,\sigma^2)$ find probabilities $P(X \gt a),\; a \gt m;\;\;P(X \lt b),\;b \lt m$.
-
Question in Content created by Newcastle University
Given the following three vectors $\textbf{v}_1,\;\textbf{v}_2,\;\textbf{v}_3$ Find out whether they are a linearly independent set are not. Also if linearly dependent find the relationship $\textbf{v}_{r}=p\textbf{v}_{s}+q\textbf{v}_{t}$ for suitable $r,\;s,\;t$ and integers $p,\;q$.
-
Question in Content created by Newcastle University
Given three linear combinations of four i.i.d. variables, find the expectation and variance of these estimators of the mean $\mu$. Which are unbiased and efficient?
-
Question in Content created by Newcastle University
Let $x_n=\frac{an+b}{cn+d},\;\;n=1,\;2\ldots$. Find $\lim_{x \to\infty} x_n=L$ and find least $N$ such that $|x_n-L| \le 10^{-r},\;n \geq N,\;r \in \{2,\;3,\;4\}$.
-
Question in Content created by Newcastle University
Multiple response question (4 correct out of 8) covering properties of convergent and divergent sequences and boundedness of sets. Selection of questions from a pool.
-
Question in Content created by Newcastle University
$x_n=\frac{an+b}{cn+d}$. Find the least integer $N$ such that $\left|x_n -\frac{a}{c}\right| \le 10 ^{-r},\;n\geq N$, $2\leq r \leq 6$.
-
Question in Content created by Newcastle University
Evaluate $\int_1^{\,m}(ax ^ 2 + b x + c)^2\;dx$, $\int_0^{p}\frac{1}{x+d}\;dx,\;\int_0^\pi x \sin(qx) \;dx$, $\int_0^{r}x ^ {2}e^{t x}\;dx$
-
Question in Content created by Newcastle University
$W \sim \operatorname{Geometric}(p)$. Find $P(W=a)$, $P(b \le W \le c)$, $E[W]$, $\operatorname{Var}(W)$.
-
Question in Content created by Newcastle University
Given subset $T \subset S$ of $m$ objects in $n$ find the probability of choosing without replacement $r\lt n-m$ from $S$ and not choosing any element in $T$.
-
Question in Content created by Newcastle University
An object moves in a straight line, acceleration given by:
$\displaystyle f(t)=\frac{a}{(1+bt)^n}$. The object starts from rest. Find its maximum speed.
-
Question in Content created by Newcastle University
Solve for $x(t)$, $\displaystyle\frac{dx}{dt}=\frac{a}{(x+b)^n},\;x(0)=0$
-
Exam (17 questions) in Content created by Newcastle UniversityQuestions used in a university course titled "Complex variables"
-
Question in Content created by Newcastle University
Application of the binomial distribution given probabilities of success of an event.
Finding probabilities using the binomial distribution.
-
Question in Content created by Newcastle University
Application of the Poisson distribution given expected number of events per interval.
Finding probabilities using the Poisson distribution.