187 results.
-
Question in Bill's workspace
$I$ compact interval, $g:I\rightarrow I,\;g(x)=ax^3+bx^2+cx+d$. Find stationary points, local and global maxima and minima of $g$ on $I$
-
Question in Bill's workspace
$I$ compact interval, $g:I\rightarrow I$, $g(x)=(x-a)(x-b)^2$. Stationary points in interval. Find local and global maxima and minima of $g$ on $I$.
-
Question in Bill's workspace
$g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
-
Question in Bill's workspace
$I$ compact interval. $\displaystyle g: I \rightarrow I, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
-
Question in Bill's workspace
$I$ compact interval. $\displaystyle g: I\rightarrow I, g(x)=\frac{x^2}{(x-c)^{a/b}}$. Are there stationary points and local maxima, minima? Has $g$ a global max, global min?
-
Question in Morten's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in Katie's workspace
$I$ compact interval, $g:I\rightarrow I,\;g(x)=ax^3+bx^2+cx+d$. Find stationary points, local and global maxima and minima of $g$ on $I$
-
Question in Katie's workspace
$I$ compact interval, $g:I\rightarrow I$, $g(x)=(x-a)(x-b)^2$. Stationary points in interval. Find local and global maxima and minima of $g$ on $I$.
-
Question in Katie's workspace
$I$ compact interval. $\displaystyle g: I\rightarrow I, g(x)=\frac{x^2}{(x-c)^{a/b}}$. Are there stationary points and local maxima, minima? Has $g$ a global max, global min?
-
Question in Katie's workspace
Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.
-
Question in Katie's workspace
Step by step solving for integration by substitution
-
Question in Katie's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in Bill's workspace
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question in Katie's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in joshua's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in joshua's workspace
Given that $\displaystyle \int^i_j x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in joshua's workspace
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $
-
Question in joshua's workspace
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $
-
Question in Katie's workspace
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $
-
Question in joshua's workspace
Find $\displaystyle \int (ax)e^{cx}\; dx $
-
Question in joshua's workspace
Find $\displaystyle \int (ax)e^{cx}\; dx $
-
Question in joshua's workspace
Find $\displaystyle \int (ax)\ln(cx)\; dx $
-
Question in joshua's workspace
Find $\displaystyle \int (ax)\ln(cx)\; dx $
-
Question in Katie's workspace
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question in Katie's workspace
Step by step solving for integration by substitution
-
Question in Katie's workspace
Step by step solving for integration by substitution
-
Question in Bill's workspace
Find $\displaystyle\int \frac{ax+b}{(x+c)(x+d)}\;dx,\;a\neq 0,\;c \neq d $.
-
Question in Bill's workspace
Find $\displaystyle\int \frac{a}{(x+b)(x+c)}\;dx,\;b \neq c $.
-
Question in Bill's workspace
Factorise $x^2+cx+d$ into 2 distinct linear factors and then find $\displaystyle \int \frac{ax+b}{x^2+cx+d}\;dx,\;a \neq 0$ using partial fractions or otherwise.
Video in Show steps.
-
Question in Bill's workspace
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $ and hence find $\displaystyle \int (ax+b)^2\sin(cx+d)\; dx $