2187 results for "find".
-
Question in Bill's workspace
a) Given a recursively defined sequence $t(n)$, find $t(n)$ as a function of $n$.
b) Given a sequence $s(n),\;n \in \mathbb{N}$, find a recursive definition of $s(n)$
-
Question in Ricardo's workspace
The random variable $X$ has a PDF which involves a parameter $c$. Find the value of $c$. Find the distribution function $F_X(x)$ and $P(a \lt X \lt b)$.
-
Question in Phil's workspace
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question in Bill's workspace
$I$ compact interval, $g:I\rightarrow I,\;g(x)=ax^3+bx^2+cx+d$. Find stationary points, local and global maxima and minima of $g$ on $I$
-
Question in Bill's workspace
$I$ compact interval, $g:I\rightarrow I$, $g(x)=(x-a)(x-b)^2$. Stationary points in interval. Find local and global maxima and minima of $g$ on $I$.
-
Question in Bill's workspace
$g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
-
Question in Bill's workspace
$I$ compact interval. $\displaystyle g: I \rightarrow I, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
-
Question in Morten's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in Katie's workspace
$I$ compact interval, $g:I\rightarrow I,\;g(x)=ax^3+bx^2+cx+d$. Find stationary points, local and global maxima and minima of $g$ on $I$
-
Question in Katie's workspace
$I$ compact interval, $g:I\rightarrow I$, $g(x)=(x-a)(x-b)^2$. Stationary points in interval. Find local and global maxima and minima of $g$ on $I$.
-
Question in Katie's workspace
Putting a pair of linear equations into matrix notation and then solving by finding the inverse of the coefficient matrix.
-
Question in Katie's workspace
Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.
-
Question in Katie's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in Bill's workspace
Given the pdf $f(x)=\frac{a-bx}{c},\;r \leq x \leq s,\;f(x)=0$ else, find $P(X \gt p)$, $P(X \gt q | X \gt t)$.
-
Question in Bill's workspace
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question in Katie's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in joshua's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in joshua's workspace
Given that $\displaystyle \int^i_j x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in joshua's workspace
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $
-
Question in joshua's workspace
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $
-
Question in Katie's workspace
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $
-
Question in joshua's workspace
Find $\displaystyle \int (ax)e^{cx}\; dx $
-
Question in joshua's workspace
Find $\displaystyle \int (ax)e^{cx}\; dx $
-
Question in joshua's workspace
Find $\displaystyle \int (ax)\ln(cx)\; dx $
-
Question in joshua's workspace
Find $\displaystyle \int (ax)\ln(cx)\; dx $
-
Question in Katie's workspace
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question in Bill's workspace
Given a probability mass function $P(X=i)$ with outcomes $i \in \{0,1,2,\ldots 8\}$, find the expectation $E$ and $P(X \gt E)$.
-
Question in Bill's workspace
Two numbers from a set of $5$ numbers are chosen at random, without replacement. Find the distribution $X$ of their sum and $E[X]$.
-
Question in Bill's workspace
The random variable $X$ has a PDF which involves a parameter $k$. Find the value of $k$. Find the distribution function $F_X(x)$ and $P(X \lt a)$.
-
Question in Bill's workspace
The random variable $X$ has a PDF which involves a parameter $c$. Find the value of $c$. Find the distribution function $F_X(x)$ and $P(a \lt X \lt b)$.