560 results for "expression".
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question in Marie's Logic workspace
Create a truth table with 3 logic variables to see if two logic expressions are equivalent.
-
Question in Marie's Logic workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Christian's workspace
This shows how to use captured groups in a mathematical expression part's pattern restriction to mark an answer involving multiple occurrences of an undefined function.
-
Question in How-tos
The student is given a value of $\cos(\theta)$ and has to find $\theta$.
Shows how to use subexpressions to represent randomly-chosen fractions of $\pi$ and surds, and have them displayed nicely.
-
Question in How-tos
Shows how to create a simplified JME subexpression, and substitute it into a string variable.
-
Question in How-tos
A custom marking algorithm for a JME part estabishes whether the student's answer is equivalent to the expected answer, up to an arbitrary constant factor.
-
Question in Ida's workspace
Use laws for addition and subtraction of logarithms to simplify a given logarithmic expression to an arbitrary base.
-
Question in Joël's workspace
Use laws for addition and subtraction of logarithms to simplify a given logarithmic expression to an arbitrary base.
-
Question in Joël's workspace
Factorise polynomials by identifying common factors. The first expression has a constant common factor; the rest have common factors involving variables.
-
Question in Blathnaid's workspace
Use laws for addition and subtraction of logarithms to simplify a given logarithmic expression to an arbitrary base.
-
Question in Lógica y Cuantificadores
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Lineare Algebra 1
Inputting algebraic expressions into Numbas. (Translation to German)
-
Question in Christian's workspace
Demo question: do some sneaky symbolic differentiation to check that the student's answer is the integral of the expression they're given.
Needs an advice section before it can be used.
-
Question in Jane's workspace
A question to practice simplifying fractions with the use of factorisation (for binomial and quadratic expressions).
-
Question in Introduction to Calculus
Use the rule $\log_a(n^b) = b\log_a(n)$ to rearrange some expressions.
-
Question in Introduction to Calculus
Rearrange some expressions involving logarithms by applying the relation $\log_b(a) = c \iff a = b^c$.
-
Question in Timur's workspacePart of the tutorial to introduse students to MATLAB programming.
-
Exam (7 questions) in Introduction to Calculus
Questions involving various techniques for rearranging and solving quadratic expressions and equations
-
Question in Chris's workspace
Small demo using the JME implementation of JSXGraph inline in a multiple choice question. This version uses a JME variable to store the expressions and then calls a function wherever a plot is required.
-
Question in Bill's workspace
Find $\displaystyle \frac{d}{dx}\left(\frac{m\sin(ax)+n\cos(ax)}{b\sin(ax)+c\cos(ax)}\right)$. Three part question.
-
Question in Bill's workspace
Express $\log_a(x^{c}y^{d})$ in terms of $\log_a(x)$ and $\log_a(y)$. Find $q(x)$ such that $\frac{f}{g}\log_a(x)+\log_a(rx+s)-\log_a(x^{1/t})=\log_a(q(x))$.
There is a video included explaining the rules of logarithms by going through simplification of logs of numbers rather than algebraic expressions.
-
Question in Bill's workspace
Express a sum of linear terms in $x$ and $y$ as a single linear term in $x$ and $y$.
-
Question in Bill's workspace
Simplify $(ax+b)(cx+d)-(ax+d)(cx+b)$. Answer is a multiple of $x$.
-
Question in Bill's workspace
Simplify $(ax+by)(cx+dy)-(ax+dy)(cx+by)$. Answer is a multiple of $xy$.
-
Question in Bill's workspace
Evaluate $\int_1^{\,m}(ax ^ 2 + b x + c)^2\;dx$, $\int_0^{p}\frac{1}{x+d}\;dx,\;\int_0^\pi x \sin(qx) \;dx$, $\int_0^{r}x ^ {2}e^{t x}\;dx$