306 results for "table".

### Refine by Refine by

• #### Topics

• Question in STAT7008

Given a random variable $X$  normally distributed as $\operatorname{N}(m,\sigma^2)$ find probabilities $P(X \gt a),\; a \gt m;\;\;P(X \lt b),\;b \lt m$.

• Exam (6 questions)

One question on determining whether statements are propositions.

Four questions about truth tables for various logical expressions.

• Question

Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e$ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.

For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$

• Question in Stats

For practising how to recognise paired data as the first step to identify a suitable statistical analysis (such as the paired t-test or Wilcoxon test).

• Question in STAT7008

Given a random variable $X$  normally distributed as $\operatorname{N}(m,\sigma^2)$ find probabilities $P(X \gt a),\; a \gt m;\;\;P(X \lt b),\;b \lt m$.

• Question in STAT7008

Given a random variable $X$  normally distributed as $\operatorname{N}(m,\sigma^2)$ find probabilities $P(X \gt a),\; a \gt m;\;\;P(X \lt b),\;b \lt m$.

• Question

Sample of size $24$ is given in a table. Find sample mean, sample standard deviation, sample median and the interquartile range.

• Style a table of sales figures
Should not be used
Question in How-tos

A randomised table is contained in a div tag with the id #sales-table, so it can be styled using the CSS preamble.

• Question in How-tos

Load data about members of the Scottish parliament from a JSON object, and display a table of 5 randomly picked MSPs.

• Question in How-tos

Load data on some items held in the Cooper Hewitt collection, and show a table of 5 randomly picked items.

• Question in How-tos

A table showing how to substitute raw LaTeX code into question text.

NOTE: You probably don't want to do this! There's usually a more robust way, where you get Numbas to make the expression for you.

• Equivalent codes

Compute tables of Hamming distances in given codes, then determine which codes are equivalent.

• Question

A multiple linear regression model of the form:

$Y=\beta_0+\beta_1X_1+ \beta_2X_2+\beta_3X_3+\beta_4X_4+\epsilon$

is fitted to some data in Minitab which generates a table showing estimates of the parameters with associated $p$-values. Determine which variable to exclude first.

• Question

Minitab was used to fit both an AR(1) model and an AR(2) to a stationary series. A  table is given summarising the results obtained from Minitab. Choose the most appropriate model and make a forecast based on that model.

• Question

Looking up t-tables.

• Linear program described in words. Student must write out constraints as equations in standard form, then identify the optimal solution in a finished simplex tableau.

• Abstract simplex method question. Given optimal tableau, student must identify optimal solution and objective value.

• 20122013 CBA4_1
Question

Looking up t-tables.

• Question

Finding probabilities from a survey giving a table of data on the alcohol consumption of males. This can be easily adapted to data from other types of surveys.

• Exam (6 questions)

One question on determining whether statements are propositions.

Four questions on find truth tables for various logical expressions.

• Question

Uses the $\chi^2$ test to see if there is any significant difference in preferences.

• Question

The human resources department of a large finance company is attempting to determine if an employee’s performance is influenced by their undergraduate degree subject. Personnel ratings are used to judge performance and the task is to use expected frequencies and the chi-squared statistic to test the null hypothesis that there is no association.

• Truth tables 0 (v2)
Question

Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.

For example $\neg q \to \neg p$.

• Truth tables 1(v2)
Question

Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.

For example: $(p \lor \neg q) \land(q \to \neg p)$.

• Truth tables 2 (v2) -

Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e$ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.

For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$

• Truth tables 3 (v2)-
Question

Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f)$ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.

For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$

• Truth tables 4 (v2)

Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e$ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.

For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$

• Question

Given a random variable $X$  normally distributed as $\operatorname{N}(m,\sigma^2)$ find probabilities $P(X \gt a),\; a \gt m;\;\;P(X \lt b),\;b \lt m$.

• Question

Simple probability question. Counting number of occurences of an event in a sample space with given size and finding the probability of the event.

• Question

Given data on probabilities of three levels of success of three options and projections of the profits that the options will accrue depending on the level of success, find the expected monetary value (EMV) for each option and choose the one with the greatest EMV.