8 results.
-
Question in WM175_A1_24
Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.
-
Question in Ugur's workspace
Gradient of $f(x,y,z)$.
Should warn that multiplied terms need * to denote multiplication.
-
Question in Content created by Newcastle University
Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.
Inputting the values given into the partial derivatives to see if 0 is obtained is tedious! Could ask for the factorisation of equation 1 as the solution uses this. However there is a problem in asking for the input of the stationary points - order of input and also giving that there is two stationary points.
-
Question in Content created by Newcastle University
Gradient of $f(x,y,z)$.
Should warn that multiplied terms need * to denote multiplication.
-
Question in Tore's workspace
Finn det stasjonære punktet $(p,q)$ til funksjonen: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Finn verdiene til $f(p,q)$.
-
Question in Katie's workspace
Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.
-
Question in Bill's workspace
Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.
-
Question in Bill's workspace
Find the critical point $(0,a)$ of the function: $f(x,y)=ax^3+bx^2y+cy^2+dy+f$ and find its type using the test given by the Hessian matrix.