204 results authored by Bill Foster - search across all users.
-
Question in Bill's workspace
Solve $p - t < \text{or}> q$
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Bill's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question in Bill's workspace
Solve for $x$ and $y$: \[ \begin{eqnarray} a_1x+b_1y&=&c_1\\ a_2x+b_2y&=&c_2 \end{eqnarray} \]
The included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
-
Question in Bill's workspace
A simultaneous equations question with integers only
-
Question in Bill's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Bill's workspace
Putting a pair of linear equations into matrix notation and then solving by finding the inverse of the coefficient matrix.
-
Question in Bill's workspace
Seven standard elementary limits of sequences.
-
Question in Bill's workspace
Let $x_n=\frac{an+b}{cn+d},\;\;n=1,\;2\ldots$. Find $\lim_{x \to\infty} x_n=L$ and find least $N$ such that $|x_n-L| \lt 10^{-r},\;n \geq N,\;r \in \{2,\;3,\;4\}$.
-
Question in Bill's workspace
$x_n=\frac{an+b}{cn+d}$. Find the least integer $N$ such that $\left|x_n -\frac{a}{c}\right| \lt 10 ^{-r},\;n\geq N$, $2\leq r \leq 6$.
-
Question in Bill's workspace
Given a set in predicate form i.e. $A=\{x|P(x)\}$, find and input the elements of the set.
-
Question in Bill's workspace
Given a set $A$, elements of which may also be sets, determine if the given elements or subsets are in $A$.
-
Question in Bill's workspace
Given some random finite subsets of the natural numbers, perform set operations $\cap,\;\cup$ and complement.
-
Question in Bill's workspace
Enumerate elements of a set given in predicate form.
For example, find all elements of $A=\{x\in\mathbb{Z}\;|\;\;|2x-5|<4\}$.
-
Question in Bill's workspace
Implicit differentiation.
Given $x^2+y^2+ax+by=c$ find $\displaystyle \frac{dy}{dx}$ in terms of $x$ and $y$.
-
Question in Bill's workspace
Implicit differentiation.
Given $x^2+y^2+dxy +ax+by=c$ find $\displaystyle \frac{dy}{dx}$ in terms of $x$ and $y$.
Also find two points on the curve where $x=0$ and find the equation of the tangent at those points.
-
Question in Bill's workspace
English sentences which are propositions are given and for each the appropriate statement involving quantifiers is to be chosen.
-
Question in Bill's workspace
English sentences which are propositions are given and the appropriate logical expression chosen for the negation of the sentence.
-
Question in Bill's workspace
English sentences are given and for each the appropriate statement involving quantifiers is to be chosen. Also choose whether the statements are true or false.
-
Question in Bill's workspace
a) Given a recursively defined sequence $t(n)$, find $t(n)$ as a function of $n$.
b) Given a sequence $s(n),\;n \in \mathbb{N}$, find a recursive definition of $s(n)$
-
Exam (5 questions) in Bill's workspace
Various questions on predicates and sets.
-
Question in Bill's workspace
Given sentences involving propositions translate into logical expressions.
-
Question in Bill's workspace
Asks to determine whether or not 6 statements are propositions or not i.e. we can determine a truth value or not.
-
Question in Bill's workspace
Paired t-test to see if there is a difference between responses after treatment.
-
Question in Bill's workspace
$I$ compact interval, $g:I\rightarrow I,\;g(x)=ax^3+bx^2+cx+d$. Find stationary points, local and global maxima and minima of $g$ on $I$
-
Question in Bill's workspace
$I$ compact interval, $g:I\rightarrow I$, $g(x)=(x-a)(x-b)^2$. Stationary points in interval. Find local and global maxima and minima of $g$ on $I$.
-
Question in Bill's workspace
$g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?