11343 results.
-
Question in Foundations of Engineering Science
Beam Equilibrium
-
Question in UWESbE - Written Assessments
Question covering DC and Step response circuits
-
Question in David's workspace
Basic runway length calculation.
-
Question in MASH Bath: Question Bank
Solve linear equations with unkowns on both sides. Including brackets and fractions.
-
Question in Maura's workspace
This question tests students' ability to use repeated squaring to perform modular exponentiation. Moduli are random numbers between 30 and 70, the base is a number between 10 and 29. To generate questions of approximately uniform difficult the exponent is taken to be 256 plus two smaller powers of 2.
-
Question in Torris's workspace
No description given
-
Question in Torris's workspace
No description given
-
Question in Torris's workspace
No description given
-
Question in Torris's workspace
No description given
-
Question in Torris's workspace
No description given
-
Question in Torris's workspace
No description given
-
Putting a pair of linear equations into matrix notation and then solving by finding the inverse of the coefficient matrix.
-
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land$.
For example $\neg q \to \neg p$.
-
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
A question to test understanding of set cardinality and intersections when limited information is known about the size of certain sets.
-
Question in Algebra
No description given
-
Question in WM175_A1_24
Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.
-
Question in MATH6058 Engineering Maths 1
Linear combinations of $2 \times 2$ matrices. Three examples.
-
Question in MfEP Progress Quizzes
An application of quadratic functions based on the Golden Gate Bridge in San Francisco, USA. Student is given an equation representing the suspension cable of the bridge and asked to find the width between the towers and the minimum height of the cable above the roadway. Requires and understanding of the quadratic function and where and how to apply correct formulae.
-
Question in MfEP Progress Quizzes
Student needs to solve a quadratic equation to calculate time taken for a diver to hit the water after diving from a diving board. Height of the board and initial upward velocity of the diver are randomly generated values. student needs to know that surface of the water is height 0, and only positive root of quadratic has physical meaning. Question is set to always give one positieve and one negative root.
-
Question in Functions
Multiple choice questions. Given randomised trig functions select the possible ways of writing the domain of the function.
-
Question in Getallenleer 1e jaar
Zet de decimale getallen naar breukvorm om en omgekeerd
-
Question in How-tos
The student has to enter `diff(y,x,2)`, equivalent to $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$, as their answer. It's marked by pattern matching, using a custom marking algorithm.
-
Question in How-tos
The student has to enter three different letters of the alphabet in the three gaps. Their answer is marked as a set: repeated answers only count as one answer.
Each gap has the same custom marking algorithm which marks that gap as correct if the student's answer is in the set of acceptable answers.
-
Question in Natalia's workspace
Calculate the magnitude of a 3-dimensional vector, where $\mathbf v$ is written in the form $\pmatrix{v_1\\v_2\\v_3}$.
-
Question in MfEP Progress Quizzes
Asks students to find the partil fraction decomposition for a rational function Denominator is a quadratic with distinct factors.
-
Question in Ugur's workspace
$A,\;B$ $2 \times 2$ matrices. Find eigenvalues and eigenvectors of both. Hence or otherwise, find $B^n$ for largish $n$.
-
Ugur's copy of Find eigenvalues, characteristic polynomial and a normalised eigenvector of a 3x3 matrix Ready to useQuestion in Ugur's workspace
Given a 3 x 3 matrix, and two eigenvectors find their corresponding eigenvalues. Also fnd the characteristic polynomial and using this find the third eigenvalue and a normalised eigenvector $(x=1)$.
-
Question in Ugur's workspace
No description given
-
Characteristic poly, eigenvalues and eigenvectors 3x3, digonailsability (non-randomised) Ready to useQuestion in Ugur's workspace
Example of an explore mode question. Student is given a 3x3 matrix and is asked to find the characteristic polynomial and eigenvalues, and then eigenvectors for each eigenvalue. The part asking for eigenvectors can be repeated as often as the student wants, to be used for different eigenvalues.
Assessed: calculating characteristic polynomial and eigenvectors.
Feature: any correct eigenvalue will be recognised by the marking algorithm, even multiples of the obvious one(s) (which can be read off from the reduced row echelon form)
Randomisation: Not randomised, just using particular matrices. I am still working on how to randomise this for 3x3; a randomised 2x2 version exists. I have several different versions for 3x3 (not all published yet), so I could make a random choice between these in a test.
The implementation uses linear algebra functions such as "find reduced echelon form" or "find kernel of a reduced echelon form", from the extension "linalg2".