384 results for "variables".
-
Question in LSE MA100 (Bugs fixed, September 2018)
This is the question for week 5 of the MA100 course at the LSE. It looks at material from chapters 9 and 10.
The following describes how we define our revenue and cost functions for part b of the question.We have variables c, f, m, h.
The revenue function is R(q) = -c q^2 + 2mf q .
The cost function is C(q) = f q^2 - 2mc q + h .The "revenue - cost" function is -(c+f) q^2 +2m(c+f) q - h
Differentiating, we see that there is a maximum point at m.
We pick each one of f, m, h randomly from the set {2, .. 6}, and we pick c randomly from {h+1 , ... , h+5}. This ensures that the discriminant of the "revenue - cost" function is positive, meaning there are two real roots, meaning the maximum point lies above the x-axis. I.e. we can actually make a profit.
-
Question in LSE MA100 (Bugs fixed, September 2018)
This is the question for week 4 of the MA100 course at the LSE. It looks at material from chapters 7 and 8. The following describes how a polynomial was defined in the question. This may be helpful for anyone who needs to edit this question.
For parts a to c, we used a polynomial defined as m*(x^4 - 2a^2 x^2 + a^4 + b), where the variables "a" and "b" are randomly chosen from a set of reaosnable size, and the variable $m$ is randomly chosen from the set {+1, -1}. We can easily see that this polynomial has stationary points at -a, 0, and a. We introduced the variable "m" so that these stationary points would not always have the same classification. The variable "b" is always positive, and so this ensures that our polynomial does not cross the x-axis. The first and second derivatives; stationary points; the evaluation of the second derivative at the stationary points; the classification of the stationary points; and the axes intercepts can all be easily expressed in terms of the variables "a", "b", and "m". Indeed, this is what we did to mark the student's answers.
-
Question in LSE MA100 (Bugs fixed, September 2018)
This is the question for week 3 of the MA100 course at the LSE. It looks at material from chapters 5 and 6. The following describes how two polynomials were defined in the question. This may be helpful for anyone who needs to edit this question.
In part a we have a polynomial. We wanted it to have two stationary points. To create the polynomial we first created the two stationary points as variables, called StationaryPoint1 and StationaryPoint2 which we will simply write as s1 ans s2 here. s2 was defined to be larger than s1. This means that the derivative of our polynomial must be of the form a(x-s1)(x-s2) for some constant a. The constant "a" is a variable called PolynomialScalarMult, and it is defined to be a multiple of 6 so that when we integrate the derivative a(x-s1)(x-s2) we only have integer coefficients. Its possible values include positive and negative values, so that the first stationary point is not always a max (and the second always a min). Finally, we have a variable called ConstantTerm which is the constant term that we take when we integrate the derivative derivative a(x-s1)(x-s2). Hence, we can now create a randomised polynomial with integers coefficients, for which the stationary points are s1 and s2; namely (the integral of a(x-s1)(x-s2)) plus ConstantTerm.
In part e we created a more complicated polynomial. It is defined as -2x^3 + 3(s1 + s2)x^2 -(6*s1*s2) x + YIntercept on the domain [0,35]. One can easily calculate that the stationary points of this polynomials are s1 and s2. Furthermore, they are chosen so that both are in the domain and so that s1 is smaller than s2. This means that s1 is a min and s2 is a max. Hence, the maximum point of the function will occur either at 0 or s2 (The function is descreasing after s2). Furthermore, one can see that when we evaluate the function at s2 we get (s2)^2 (s2 -3*s1) + YIntercept. In particular, this is larger than YIntercept if s2 > 3 *s1, and smaller otherwise. Possible values of s2 include values which are larger than 3*s1 and values which are smaller than 3*s1. Hence, the max of the function maybe be at 0 or at s2, dependent on s2. This gives the question a good amount of randomisation.
-
Question in J. Richard's workspace
Factorise polynomials by identifying common factors. The first expression has a constant common factor; the rest have common factors involving variables.
-
Exam (6 questions) in Killian's workspace
This quiz is designed to help you practise your integration techniques.
Improvements needed:
- Add some definite integrals to Q2
- Use different variables
-
Question in Javier's workspace
Choosing whether given random variables are qualitative or quantitative.
-
Question in Gareth's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Gareth's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Nick's workspace
Evaluate $\int_0^{\,m}e^{ax}\;dx$, $\int_0^{p}\frac{1}{bx+d}\;dx,\;\int_0^{\pi/2} \sin(qx) \;dx$.
-
Question in Nick's workspace
Evaluate $\int_0^{\,m}e^{ax}\;dx$, $\int_0^{p}\frac{1}{bx+d}\;dx,\;\int_0^{\pi/2} \sin(qx) \;dx$.
-
Question in NEM1001
This exercise will help you rearrange some complex equations.
-
Question in David's workspace
Demonstrates that the marking algorithm for "match text pattern" parts doesn't put quotes around substituted strings any more.
-
Question in David's workspace
Given a random variable $X$ normally distributed as $\operatorname{N}(m,\sigma^2)$ find probabilities $P(X \gt a),\; a \gt m;\;\;P(X \lt b),\;b \lt m$.
-
Question in Morten's workspace
Evaluate $\int_0^{\,m}e^{ax}\;dx$, $\int_0^{p}\frac{1}{bx+d}\;dx,\;\int_0^{\pi/2} \sin(qx) \;dx$.
-
Question in Julie's workspace
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Julie's workspace
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Julie's workspace
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Julie's workspace
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Julie's workspace
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question in Harry's workspace
Solve for $x(t)$, $\displaystyle\frac{dx}{dt}=\frac{a}{(x+b)^n},\;x(0)=0$
-
Question in etain's workspace
Modular arithmetic. Find the following numbers modulo the given number $n$. Three examples to do.
-
Question in Double integrals
No description given
-
Question in Double integrals
No description given
-
Question in Julio's workspace
Resolver ecuaciones de primer grado con dos variables
-
Question in Newcastle University Biomechanics
No description given
-
Question in 2018
Factorise polynomials by identifying common factors. The first expression has a constant common factor; the rest have common factors involving variables.
-
Question in Patrice's workspace
Provided with information on a sample with sample mean and standard deviation, but no information on the population variance, use the t test to either accept or reject a given null hypothesis.
-
Question in Patrice's workspace
Provided with information on a sample with sample mean and standard deviation, but no information on the population variance, use the t test to either accept or reject a given null hypothesis.
-
Question in Patrice's workspace
Provided with information on a sample with sample mean and standard deviation, but no information on the population variance, use the t test to either accept or reject a given null hypothesis.
-
Question in Patrice's workspace
Provided with information on a sample with sample mean and standard deviation, but no information on the population variance, use the t test to either accept or reject a given null hypothesis.