77 results.
-
Question in Calculus
Using chain rule to differentiate functions of the form asin(mx+b).
-
Question in Narvik
Basic rules of derivatives
-
Question in Tore's workspace
Finn det stasjonære punktet $(p,q)$ til funksjonen: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Finn verdiene til $f(p,q)$.
-
Question in Tore's workspace
Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.
-
Question in vijay's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in Bill's workspace
Implicit differentiation.
Given $x^2+y^2+dxy +ax+by=c$ find $\displaystyle \frac{dy}{dx}$ in terms of $x$ and $y$.
Also find two points on the curve where $x=0$ and find the equation of the tangent at those points.
-
Question in Bill's workspace
Implicit differentiation.
Given $x^2+y^2+ax+by=c$ find $\displaystyle \frac{dy}{dx}$ in terms of $x$ and $y$.
-
Question in Bill's workspace
$I$ compact interval. $\displaystyle g: I\rightarrow I, g(x)=\frac{x^2}{(x-c)^{a/b}}$. Are there stationary points and local maxima, minima? Has $g$ a global max, global min?
-
Question in Morten's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in Katie's workspace
$I$ compact interval. $\displaystyle g: I\rightarrow I, g(x)=\frac{x^2}{(x-c)^{a/b}}$. Are there stationary points and local maxima, minima? Has $g$ a global max, global min?
-
Question in Katie's workspace
Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.
-
Question in Bill's workspace
Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.
-
Question in Bill's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in Bill's workspace
Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.
-
Question in Bill's workspace
Find the critical point $(0,a)$ of the function: $f(x,y)=ax^3+bx^2y+cy^2+dy+f$ and find its type using the test given by the Hessian matrix.
-
Question in Katie's workspace
Find the gradient of $ \displaystyle ax^b+\frac{c}{x^{d}}+f$ at $x=n$
-
Question in David's workspace
Find the gradient of $ \displaystyle ax^b+\frac{c}{x^{d}}+f$ at $x=n$