187 results.
-
Question in Content created by Newcastle University
An object moves in a straight line, acceleration given by:
$\displaystyle f(t)=\frac{a}{(1+bt)^n}$. The object starts from rest. Find its maximum speed.
-
Question in Content created by Newcastle University
Solve: $\displaystyle \frac{d^2y}{dx^2}+2a\frac{dy}{dx}+(a^2+b^2)y=0,\;y(0)=1$ and $y'(0)=c$.
-
Question in Content created by Newcastle University
Solve for $x(t)$, $\displaystyle\frac{dx}{dt}=\frac{a}{(x+b)^n},\;x(0)=0$
-
Question in Content created by Newcastle University
Solve: $\displaystyle \frac{d^2y}{dx^2}+2a\frac{dy}{dx}+a^2y=0,\;y(0)=c$ and $y(1)=d$. (Equal roots example).
-
Question in Content created by Newcastle University
Find the first 3 terms in the Taylor series at $x=c$ for $f(x)=(a+bx)^{1/n}$ i.e. up to and including terms in $x^2$.
-
Question in Clare Year 3
Implicit differentiation.
Given $x^2+y^2+ax+by=c$ find $\displaystyle \frac{dy}{dx}$ in terms of $x$ and $y$.
-
Question in Julie's workspace
Find $\displaystyle \int x(a x ^ 2 + b)^{m}\;dx$
-
Question in Julie's workspace
Find $\displaystyle \int \frac{2ax + b}{ax ^ 2 + bx + c}\;dx$
-
Question in Julie's workspace
Find $\displaystyle \int \sin(x)(a+ b\cos(x))^{m}\;dx$
-
Question in Julie's workspace
Find $\displaystyle \int \frac{a}{(bx+c)^n}\;dx$
-
Question in Julie's workspace
Find $\displaystyle \int ae ^ {bx}+ c\sin(dx) + px ^ {q}\;dx$.
-
Question in Julie's workspace
Rotate $y=a(\cos(x)+b)$ by $2\pi$ radians about the $x$-axis between $x=c\pi$ and $x=(c+2)\pi$. Find the volume of revolution.
rebelmaths
-
Question in Julie's workspace
Find $\displaystyle \int\frac{ax+b}{(1-x^2)^{1/2}} \;dx$. Solution involves inverse trigonometric functions.
rebelmaths
-
Question in Julie's workspace
Evaluate $\int_1^{\,m}(ax ^ 2 + b x + c)^2\;dx$, $\int_0^{p}\frac{1}{x+d}\;dx,\;\int_0^\pi x \sin(qx) \;dx$, $\int_0^{r}x ^ {2}e^{t x}\;dx$
rebelmaths
-
Question in Julie's workspace
Find the general solution of $y''+2py'+(p^2-q^2)y=x$ in the form $Ae^{ax}+Be^{bx}+y_{PI}(x),\;y_{PI}(x)$ a particular integral.
rebelmaths
-
Question in Julie's workspace
Find the solution of $\displaystyle x\frac{dy}{dx}+ay=bx^n,\;\;y(1)=c$
rebelmaths
-
Question in Julie's workspace
Find the solution of $\displaystyle \frac{dy}{dx}=\frac{1+y^2}{a+bx}$ which satisfies $y(1)=c$
rebelmaths
-
Question in Julie's workspace
Solve 4 first order differential equations of two types:$\displaystyle \frac{dy}{dx}=\frac{ax}{y},\;\;\frac{dy}{dx}=\frac{by}{x},\;y(2)=1$ for all 4.
rebelmaths
-
Question in TEAME's workspace
indefinite integration
Find $\displaystyle \int ax ^ m+ bx^{c/n}\;dx$.
rebel
rebelmaths
-
Question in Calculus
Differentiate $\displaystyle (ax^m+b)^{n}$.
-
Question in Calculus
Using chain rule to differentiate functions of the form asin(mx+b).
-
Question in Tore's workspace
Finn det stasjonære punktet $(p,q)$ til funksjonen: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Finn verdiene til $f(p,q)$.
-
Question in Tore's workspace
Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.
-
Andrew's copy of CF Maths In class test three question 8 Integration by partial fractions with limits Ready to useQuestion in Andrew's workspace
Find $\displaystyle\int \frac{ax+b}{(x+c)(x+d)}\;dx,\;a\neq 0,\;c \neq d $.
-
Question in vijay's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in YJ's workspace
Customised for the Numbas demo exam
Factorise $x^2+cx+d$ into 2 distinct linear factors and then find $\displaystyle \int \frac{ax+b}{x^2+cx+d}\;dx,\;a \neq 0$ using partial fractions or otherwise.
Video in Show steps.
-
Question in Daniel's workspace
Find the general solution of $y''+2py'+(p^2-q^2)y=A\sin(fx)$ in the form $A_1e^{ax}+B_1e^{bx}+y_{PI}(x),\;y_{PI}(x)$ a particular integral. Use initial conditions to find $A_1,B_1$.
-
Question in Bill's workspace
Implicit differentiation.
Given $x^2+y^2+ax+by=c$ find $\displaystyle \frac{dy}{dx}$ in terms of $x$ and $y$.
-
Question in Bill's workspace
Implicit differentiation.
Given $x^2+y^2+dxy +ax+by=c$ find $\displaystyle \frac{dy}{dx}$ in terms of $x$ and $y$.
Also find two points on the curve where $x=0$ and find the equation of the tangent at those points.
-
Question in Phil's workspace
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.