233 results.
-
Question in Ricardo's workspace
$A$ a $3 \times 3$ matrix. Using row operations on the augmented matrix $\left(A | I_3\right)$ reduce to $\left(I_3 | A^{-1}\right)$.
-
Question in joshua's workspace
Split $\displaystyle \frac{b}{(cx + d)(px+q)}$ into partial fractions.
-
Question in joshua's workspace
No description given
-
Question in joshua's workspace
Split $\displaystyle \frac{ax+b}{(cx + d)(px+q)}$ into partial fractions.
-
Question in Phil's workspace
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question in Bill's workspace
Exercises in multiplying matrices.
-
Question in Bill's workspace
Linear combinations of $2 \times 2$ matrices. Three examples.
-
Question in Katie's workspace
Linear combinations of $2 \times 2$ matrices. Three examples.
-
Question in Katie's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in joshua's workspace
Split $\displaystyle \frac{b}{(cx + d)(px+q)}$ into partial fractions.
-
Question in Bill's workspace
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question in joshua's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in joshua's workspace
Given that $\displaystyle \int^i_j x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in Katie's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in Katie's workspace
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question in Bill's workspace
Find $\displaystyle \int x\sin(cx+d)\;dx,\;\;\int x\cos(cx+d)\;dx $ and hence $\displaystyle \int ax\sin(cx+d)+bx\cos(cx+d)\;dx$
-
Question in Bill's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in Ida Friestad's workspace
No description given
-
Question in Habiba's workspace
Solving a system of three linear equations in 3 unknowns using Gauss Elimination in 4 stages. Solutions are all integral.
-
Question in Habiba's workspace
$A$ a $3 \times 3$ matrix. Using row operations on the augmented matrix $\left(A | I_3\right)$ reduce to $\left(I_3 | A^{-1}\right)$.
-
Question in Katie's workspace
Find $c$ and $d$ such that $x^2+ax+b = (x+c)^2+d$.
-
Question in Graham's workspace
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question in Bill's workspace
No description given