701 results for "rule".
-
Exam (15 questions) in Standard Maths
This is a set of practice questions for the non-right-angle trig component of the Australian year 12 Mathematics Standard 2 course.
It asks questions about
- finding sides and angles of right angle triangles,
- finding areas of triangles,
- using the sine rule,
- using the cos rule,
- bearings, and
- radial surveys.
-
Question in Demos
Customised for the Numbas demo exam
Factorise $x^2+cx+d$ into 2 distinct linear factors and then find $\displaystyle \int \frac{ax+b}{x^2+cx+d}\;dx,\;a \neq 0$ using partial fractions or otherwise.
Video in Show steps.
-
Question in PA1710
Differentiate $x^m\cos(ax+b)$
-
Question in PA1710
The derivative of $\displaystyle x ^ {m}(ax^2+b)^{n}$ is of the form $\displaystyle x^{m-1}(ax^2+b)^{n-1}g(x)$. Find $g(x)$.
-
Question in GCSE level questions
No description given
-
Question in GCSE level questions
No description given
-
Question in Bill's workspace
Other method. Find $p,\;q$ such that $\displaystyle \frac{ax+b}{cx+d}= p+ \frac{q}{cx+d}$. Find the derivative of $\displaystyle \frac{ax+b}{cx+d}$.
-
Question in Bill's workspace
Find $\displaystyle \frac{d}{dx}\left(\frac{m\sin(ax)+n\cos(ax)}{b\sin(ax)+c\cos(ax)}\right)$. Three part question.
-
Question in Bill's workspace
The derivative of $\displaystyle \frac{ax^2+b}{cx^2+d}$ is $\displaystyle \frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.
Contains a video solving a similar quotient rule example. Although does not explicitly find $g(x)$ as asked in the question, but this is obvious.
-
Question in Bill's workspace
Examples on differentiation using the quotient rule and chain rule.
-
Question in Bill's workspace
Differentiate $f(x)=x^{m}\sin(ax+b) e^{nx}$.
The answer is of the form:
$\displaystyle \frac{df}{dx}= x^{m-1}e^{nx}g(x)$ for a function $g(x)$.Find $g(x)$.
-
Question in Bill's workspace
Express $\log_a(x^{c}y^{d})$ in terms of $\log_a(x)$ and $\log_a(y)$. Find $q(x)$ such that $\frac{f}{g}\log_a(x)+\log_a(rx+s)-\log_a(x^{1/t})=\log_a(q(x))$.
There is a video included explaining the rules of logarithms by going through simplification of logs of numbers rather than algebraic expressions.
-
Question in Bill's workspace
Find $\displaystyle \int \sin(x)(a+ b\cos(x))^{m}\;dx$
-
Question in Bill's workspace
Find $\displaystyle \int \frac{2ax + b}{ax ^ 2 + bx + c}\;dx$
-
Question in Bill's workspace
Find $\displaystyle \int x(a x ^ 2 + b)^{m}\;dx$
-
Question in Bill's workspace
Find $\displaystyle \int\frac{ax+b}{(1-x^2)^{1/2}} \;dx$. Solution involves inverse trigonometric functions.
-
Question in Bill's workspace
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $ and hence find $\displaystyle \int (ax+b)^2\sin(cx+d)\; dx $
Also two other questions on integrating by parts.
-
Question in Bill's workspace
Differentiate $ \sin(ax+b) e ^ {nx}$.
-
Question in Bill's workspace
Differentiate $x^m\cos(ax+b)$
-
Question in Bill's workspace
Differentiate $ (a+bx) ^ {m} \sin(nx)$
-
Question in Bill's workspace
Differentiate $ (ax+b)^m(cx+d)^n$ using the product rule. The answer will be of the form $(ax+b)^{m-1}(cx+d)^{n-1}g(x)$ for a polynomial $g(x)$. Find $g(x)$.
-
Question in Bill's workspace
Differentiate $ x ^ m(ax+b)^n$ using the product rule. The answer will be of the form $x^{m-1}(ax+b)^{n-1}g(x)$ for a polynomial $g(x)$. Find $g(x)$.
-
Question in Bill's workspace
The derivative of $\displaystyle \frac{ax+b}{\sqrt{cx+d}}$ is $\displaystyle \frac{g(x)}{2(cx+d)^{3/2}}$. Find $g(x)$.
-
Question in Bill's workspace
The derivative of $\displaystyle \frac{ax+b}{cx^2+dx+f}$ is $\displaystyle \frac{g(x)}{(cx^2+dx+f)^2}$. Find $g(x)$.
-
Question in Bill's workspace
Differentiate $f(x) = x^m(a x+b)^n$.
-
Question in Bill's workspace
Differentiate $ x ^m \sqrt{a x+b}$.
The answer is in the form $\displaystyle \frac{x^{m-1}g(x)}{2\sqrt{ax+b}}$
for a polynomial $g(x)$. Find $g(x)$. -
Question in Bill's workspace
Differentiate the function $(a + b x)^m e ^ {n x}$ using the product rule.
-
Question in Bill's workspace
Differentiate the function $f(x)=(a + b x)^m e ^ {n x}$ using the product rule. Find $g(x)$ such that $f\;'(x)= (a + b x)^{m-1} e ^ {n x}g(x)$.
-
Question in Bill's workspace
Express $\displaystyle \frac{a}{x + b} + \frac{cx+d}{x^2 +px+ q}$ as an algebraic single fraction over a common denominator.
-
Question in Bill's workspace
The derivative of $\displaystyle x ^ {m}(ax^2+b)^{n}$ is of the form $\displaystyle x^{m-1}(ax^2+b)^{n-1}g(x)$. Find $g(x)$.