29 results.
-
Question in Ugur's workspace
Multiple response question (4 correct out of 8) covering properties of convergent and divergent series and including questions on power series. Selection of questions from a pool.
-
Question in Transition to university
An applied example of the use of two points on a graph to develop a straight line function, then use the t estimate and predict. MCQ's are also used to develop student understanding of the uses of gradient and intercepts as well as the limitations of prediction.
-
Question in Content created by Newcastle University
Multiple response question (3 correct out of 6) re properties of convergent and divergent sequences. Selection of questions from a pool.
-
Question in Content created by Newcastle University
Multiple response question (4 correct out of 8) covering properties of convergent and divergent sequences and boundedness of sets. Selection of questions from a pool.
-
Question in Transition to university
Multiplication and division of upper and lower bounds.
-
Question in Content created by Newcastle University
Multiple response question (4 correct out of 8) covering properties of convergent and divergent series and including questions on power series. Selection of questions from a pool.
-
Question in Content created by Newcastle University
$x_n=\frac{an^2+b}{cn^2+d}$. Find the least integer $N$ such that $\left|x_n -\frac{a}{c}\right| < 10 ^{-r},\;n\geq N$, $2\leq r \leq 6$. Determine whether the sequence is increasing, decreasing or neither.
-
Question in Content created by Newcastle University
Four questions on finding least upper bounds and greatest lower bounds of various sets.
-
Question in Content created by Newcastle University
$x_n=n^k t^n$ where $k$ is a positive integer and $t$ a real number with $0 < t<1$. Find the smallest integer $N$ such that $(m+1)^k t^{m+1} \leq m^k t^m$ for all $m \geq N$.
-
Question in Content created by Newcastle University
Eight questions on finding least upper bounds and greatest lower bounds of various sets.
-
Question in Content created by Newcastle University
Multiple response question (2 correct out of 4) covering properties of Riemann integration. Selection of questions from a pool.
-
Question in Content created by Newcastle University
Question on $\displaystyle{\lim_{n\to \infty} a^{1/n}=1}$. Find least integer $N$ s.t. $\ \left |1-\left(\frac{1}{c}\right)^{b/n}\right| \le10^{-r},\;n \geq N$
-
Question in Content created by Newcastle University
Let $x_n=\frac{an+b}{cn+d},\;\;n=1,\;2\ldots$. Find $\lim_{x \to\infty} x_n=L$ and find least $N$ such that $|x_n-L| \le 10^{-r},\;n \geq N,\;r \in \{2,\;3,\;4\}$.
-
Question in Content created by Newcastle University
Seven standard elementary limits of sequences.
-
Question in Content created by Newcastle University
Using simple substitution to find $\lim_{x \to a} bx+c$, $\lim_{x \to a} bx^2+cx+d$ and $\displaystyle \lim_{x \to a} \frac{bx+c}{dx+f}$ where $d\times a+f \neq 0$.
-
Question in Content created by Newcastle University
Multiple response question (4 correct out of 8) covering properties of convergent and divergent sequences and boundedness of sets. Selection of questions from a pool.
-
Question in Content created by Newcastle University
$x_n=\frac{an+b}{cn+d}$. Find the least integer $N$ such that $\left|x_n -\frac{a}{c}\right| \le 10 ^{-r},\;n\geq N$, $2\leq r \leq 6$.
-
Question in Content created by Newcastle University
$f(x,y)$ is the PDF of a bivariate distribution $(X,Y)$ on a given rectangular region in $\mathbb{R}^2$. Write down the limits of the integrations needed to find $P(X \ge a)$, the marginal distributions $f_X(x),\;f_Y(y)$ and the conditional probability $P(Y \le b|X \ge c)$
-
Question in Content created by Newcastle University
Multiple response question (2 correct out of 4) covering properties of continuity and differentiability. Selection of questions from a pool.
Can choose true and false for each option. Also in one test run the second choice was incorrectly entered, rest correct, but the feedback indicates that the third was wrong.
-
Question in Content created by Newcastle University
Multiple response question (2 correct out of 4) covering properties of continuity and limits of functions. Selection of questions from a pool.
-
Question in Content created by Newcastle University
Eight questions on finding least upper bounds and greatest lower bounds of various sets.
-
Question in Content created by Newcastle University
An object moves in a straight line, acceleration given by:
$\displaystyle f(t)=\frac{a}{(1+bt)^n}$. The object starts from rest. Find its maximum speed.
-
Question in Transition to university
Work with lower and upper bounds for estimates of weight.
-
Question in Bill's workspace
Seven standard elementary limits of sequences.
-
Question in Bill's workspace
Let $x_n=\frac{an+b}{cn+d},\;\;n=1,\;2\ldots$. Find $\lim_{x \to\infty} x_n=L$ and find least $N$ such that $|x_n-L| \lt 10^{-r},\;n \geq N,\;r \in \{2,\;3,\;4\}$.
-
Question in Bill's workspace
$x_n=\frac{an+b}{cn+d}$. Find the least integer $N$ such that $\left|x_n -\frac{a}{c}\right| \lt 10 ^{-r},\;n\geq N$, $2\leq r \leq 6$.
-
Question in Bill's workspace
$g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
-
Question in Bill's workspace
$I$ compact interval. $\displaystyle g: I \rightarrow I, g(x)=\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
-
Question in Katie's workspace
Seven standard elementary limits of sequences.